A STRAIGHT EDGE AND COMPASS CONSTRUCTION, by William J. Bruce and Edgar Phibbs

Editors' Note: Professors Bruce and Phibbs of the University of Alberta, Edmonton, found a construction in plane geometry rather challenging and they pass their discoveries along in an article.

Problem: L_{1}, L_{2} and L_{3} are three rays emanating from $0 . ~ P$ is any point on L_{1}. Locate T and R on L_{2} and L_{3}, respectively, so that今 PRT is equilateral.

Solution I. Consider the general case with rays L_{1}, L_{2} and L_{3} such that $\alpha=\beta$ as shown.

Construction:

1. Construct $P Q \perp L_{3}$.
2. Construct $\angle \mathrm{MPQ}=\angle \mathrm{NPQ}=30^{\circ}$.
3. Construct the equilateral \triangle NVM.
4. Produce $V M$ to cut L_{2} at T.
5. Construct $N R=M T$.
6. \triangle PRT is equilateral.

Proof:

1. \triangle 's PNR and PMT are congruent by construction (s.a.s.)
2. Hence $P R=P T$ and $\angle N P R=\angle M P T$.
3. $\angle \mathrm{RPT}=60^{\circ}$ since $\angle \mathrm{NPM}=60^{\circ}$ by construction and equal angles NPR and MPT are subtracted therefrom and added thereto respectively.
4. Hence \triangle PTR is equilateral.

Note: If VN is produced to cut L_{2} and steps corresponding to the above are followed, another such equilateral triangle results but with T on the opposite side of $P R$.

Solution II. Consider the general case with rays L_{1}, L_{2} and L_{3} sudn that $x=\beta$ as shown.

1. Construct $\angle \mathrm{OPO}=60^{\circ}-\alpha$.
2. Construct $\angle \mathrm{RQT}=60^{\circ}$.
3. Draw a circle through P, Q and R cutting OL_{2} at T. 4. \angle PRT is equilateral.

Proof:

1. $\angle \mathrm{PQT}=60^{\circ}$.
2. $\angle \mathrm{TRP}=\angle \mathrm{PQT}=60^{\circ}$. (Subtended by the same chord TP)
3. $\therefore \mathrm{TPR}=\angle \mathrm{TQR}=60^{\circ}$. (Subtended by the same chord TR)
4. Hence $\triangle \mathrm{PTR}$ is equilateral.

Note: If $-L_{1} P Q$ is constructed to be $5 n^{\circ}+\alpha$, another such equilateral triangle results but with T on the opposite side of $P R$.

Special Cases and Remarks

When $-\alpha+j \leq 60^{\circ}$ two triangles are possible without considering the backward extension of the rays. If $\alpha+\beta^{3}=60^{\circ}$, one vertex lies at 0 . If in addition to this, $\alpha=\boldsymbol{\zeta}$, the construction is trivial. When $60^{\circ}<c \times+\beta \leq 120^{\circ}$ two triangles are possible by permitting the backward extension of the rays. In this case, one triangle lies on the forward extension, the other on the backward extension. If c. $+\bar{B}=120^{\circ}$, one vertex lies at 0 . Again, if in addition to this, $(\lambda=1)$, the construction is trivial.

For $120^{\circ}, d+3<360^{\circ}$ two triangles are generally possible by permitting the backward extension of the rays. If $d x=?=90^{\circ}$, the construction is trivial with one triangle on the backward extension. If $火=, ~ \vdots=120^{\circ}$, the construction is also trivial with three triangles possible. One of these triangles is on the forward extensions and the other two on the backward extensions.

