A STRAIGHT EDGE AND COMPASS CONSTRUCTION, by William J. Bruce and Edgar Phibbs

<u>Editors' Note:</u> Professors Bruce and Phibbs of the University of Alberta, Edmonton, found a construction in plane geometry rather challenging and they pass their discoveries along in an article.

<u>Problem:</u> L_1 , L_2 and L_3 are three rays emanating from 0. P is any point on L_1 . Locate T and R on L_2 and L_3 , respectively, so that \triangle PRT is equilateral.

Solution I. Consider the general case with rays L_1 , L_2 and L_3 such that $\alpha = \beta$ as shown.

5

Construction:

- 1. Construct $PQ \perp L_3$.
- 2. Construct \angle MPQ = \angle NPQ = 30°.
- 3. Construct the equilateral \triangle NVM.
- 4. Produce VM to cut L_2 at T.
- 5. Construct NR = MT.
- 6. \triangle PRT is equilateral.

Proof:

- 1. \bigtriangleup 's PNR and PMT are congruent by construction (s.a.s.)
- 2. Hence PR = PT and $\angle NPR = \angle MPT$.
- 3. \angle RPT = 60° since \angle NPM = 60° by construction and equal angles NPR and MPT are subtracted therefrom and added thereto respectively.
- 4. Hence ▲ PTR is equilateral.

<u>Note</u>: If VN is produced to cut L_2 and steps corresponding to the above are followed, another such equilateral triangle results but with T on the opposite side of PR. Solution II. Consider the general case with rays L_1 , L_2 and L_3 such that $x = \beta$ as shown.

Construction:

1. Construct \angle OPO = 60° - \propto .

2. Construct \angle RQT = 60°.

3. Draw a circle through P, Q and R cutting OL_2 at T. 4. \angle PRT is equilateral.

Proof:

1. \angle PQT = 60°.

2. \angle TRP = \angle PQT = 60°. (Subtended by the same chord TP) 3. \angle TPR = \angle TQR = 60°. (Subtended by the same chord TR) 4. Hence \triangle PTR is equilateral.

7

<u>Note:</u> If \perp L₁PQ is constructed to be $60^{\circ} + \propto$, another such equilateral triangle results but with T on the opposite side of PR.

Special Cases and Remarks

When $\alpha + \beta \leq 60^{\circ}$ two triangles are possible without considering the backward extension of the rays. If $\alpha + \beta = 60^{\circ}$, one vertex lies at 0. If in addition to this, $\alpha = \beta$, the construction is trivial. When $60^{\circ} < \alpha + \beta \leq 120^{\circ}$ two triangles are possible by permitting the backward extension of the rays. In this case, one triangle lies on the forward extension, the other on the backward extension. If $\alpha + \beta = 120^{\circ}$, one vertex lies at 0. Again, if in addition to this, $\alpha = \beta$, the construction is trivial.

For $120^{\circ} < c' + \frac{3}{2} < 360^{\circ}$ two triangles are generally possible by permitting the backward extension of the rays. If $c' = \frac{3}{2} = 90^{\circ}$, the construction is trivial with one triangle on the backward extension. If $c' = \frac{3}{2} = 120^{\circ}$, the construction is also trivial with three triangles possible. One of these triangles is on the forward extensions and the other two on the backward extensions.

8