TRIGONOMETRIC FUNCTIONS OF SUMS

William J. Bruce

```
Dr. Bruce is an associate professor in the Department of
    Mathematics at the University of Alberta.
```

The following analytic method of launching a study of trigonometric functions of sums involves the unit circle, the distance formula and a simple rotation; it also furnishes quite briefly a completely general result in a rather elegant manner.

Consider any two angles α and B in standard position with P_{1} and P_{2}, respectively, points on their terminal sides on a unit circle. The coordinates of P_{1} are thus $(\cos \alpha, \sin \alpha)$ and those of P_{2} are $(\cos \beta, \sin \beta)$ - see Figure 1. By the distance formula, $d^{2}=\left|P_{1} P_{2}\right|^{2}$ is given by

$$
\begin{aligned}
d^{2}= & (\cos \alpha-\cos \beta)^{2}+(\sin \alpha-\sin \beta)^{2} \\
= & \cos ^{2} \alpha+\cos ^{2} \beta-2 \cos \alpha \cos \beta+\sin ^{2} \alpha+ \\
& \sin ^{2} \beta-2 \sin \alpha \sin \beta
\end{aligned}
$$

$$
=2-2(\cos \alpha \cos \beta+\sin \alpha \sin \beta)
$$

Fig. 1

Fig. 2

Rotate $P_{1} P_{2}$ about 0 , through the angle $-\beta$, so that $P_{1}(\cos \alpha, \sin \alpha)$ becomes $P_{1}[\cos (\alpha-\beta)$, $\sin (\alpha-\beta)]$ and $P_{2}(\cos \beta, \sin \beta)$ becomes $P_{2}[\cos (\beta-\beta)$, $\sin (\beta-\beta)]$ or $P_{2}(1,0)$ - see Figure 2. By the distance formula we now obtain

$$
\begin{aligned}
d^{2} & =[\cos (\alpha-\beta)-1]^{2}+\sin ^{2}(\alpha-\beta) \\
& =\cos ^{2}(\alpha-\beta)-2 \cos (\alpha-\beta)+1+\sin ^{2}(\alpha-\beta) \\
& =2-2 \cos (\alpha-\beta)
\end{aligned}
$$

Since rotation does not change d, we have $2-2 \cos (\alpha-\beta)=2-2(\cos \alpha \cos \beta+\sin \alpha \sin \beta)$
which upon simplification yields
$\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta$
Furthermore, since the preceding arguments are the same for all values of α and β, the above result is true in general.

TEACHER'S GLOSSARY OF NEW MATHEMATICAL TERMS
(From the Bulletin of the California Mathematics Council)
SET: What you do in a chair.
SUBSET: What you do under a chair.
PROPER SUBSET: Sitting straight under a chair.
EMPTY SUBSET: Somebody is absent.
CLOSED SET: Kindergarten teachers.
ELEMENT: Large animal with a trunk.
CLOSURE: Last day of school.
SYMBOL: Part of a brass band.
BINARY: Two-headed canary. RATIONAL NUMBER: Four-day week. UNIVERSE: Poems you know.
IRRATIONAL NUMBER: Parent with a complaint.
FRACTION: Broken bones.
PLANE: Not fancy.

