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PROBLEMS FOR SOLUTION 

l. Prove that if tht• bisectors of the b;-ise angles of a triangle 
are equal in length, then the triangle is isosceles. (This 
is an old prclblem, rather like the one: If the medi.ans of 
a trianglv ar2 Pqual in length, then it is isosceles.) 

2. Given Sin A, Sin B, Sin (A+ B): show how to find Cos (A+ B) 
us:lng only rational cc)mbinations of the data. 

(Example: Cos (A + B) ;/l-Sin2 (A + B) is no good since 
this is not a rational use of the data). This problem had 
considerable practical use and was asked by the War Office 
in Britain in World War II. 

J. Prove that the only number which will divide two consecutive 
nunbers of the form n2 + 1 is the number 5. 

4. Two positive integers are chosen at random. Find the pro
bability that they are relativelv prime. 

(Example: 9 and 20 are relatively prime although each has 
various factors.) 

The answer is not zero. 

5. Prove the Dudeney-Steinhaus theorem: if X,Y,Z divide the 
sides of a triangle ABC in cyclic order, in the ratio 2:1, 
then .1LMN; 1/7 LIABC where L,:'.-1,� are the intersections of 
A.X, BY and CZ. 
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