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Getting the erect'-angle on mathematical activit~r 

There has been a large amount of literature and perhaps an even larger 
amount of activity packages developed for and by teachers and students of mathe-
matics over the last 5 years. The basis for much of this development came from 
the assumption of the value of individualized instruction and of such adages as 
"doing produces understanding", "go from concrete to abstract", and "discovery". 
The teacher, in face of the proliferation of such educational slogans and complex 
masses of material, must search out fundamental personal reasons for using activ-
ities. Upon finding convincing reasons for having students engage in such ac-
tivities, the teacher might well ask, "Can this be done without large expenditures 
of time, money, or both?" It is one purpose of this paper to briefly discuss 
some issues surrounding the "Why activities?" question. The major portion of the 
paper will try to cope with the "how" problem by using the simple mathematical 
creature, the rectangle, and its sub-species, the square. 

PLAYING AROUND G/ITH MATHEMATICS 

There are many potential benefits of activities in mathematics. From a 
developmental point of view, it is considered that students, probably through 
junior high school age (Lovell, 1971) are capable of logical thinking about 
real or potentially real situations, but not very able to deal with completely 
hypothetical situations. Thus physical models or pictorial images provide a 
necessary grist for the logical- mathematical thinking of children perhaps up 
until the age of 14 or 15. 

Perhaps as important as the notion of using concrete or pictorial models 
as starting points for mathematical ideas, is the notion that students can profit-
ably play with such models. For the preschool child, 2 major modes of changing 
his picture of the world exist, playing and imitating. The latter affords the 
child the opportunity to reshape his thought to accommodate some phenomenon 
in the world. Thus a child watching hockey on T.V. finds a model he can imitate 
in handling a hockey stick, an action which may have been completely foreign to 
him previously. Playing allows the child to impose his already made ideas on 
new phenomena. For example, our young "hockey player" finds he can use balls, 
bottle caps or plastic discs as "pucks" and many things for sticks, goals and 
even rinks. Thus playing allows for creating powerful general ideas. In school, 
and perhaps this practice increases with the grade level, we tend to take a one-
sided view of acquisition of ideas. Imitation is taken to be the tool, while 
play becomes a frivolous activity or one which perhaps can take place as a stu-
dent practices with an idea or skill learned through imitation. In mathematics, 
this tends to mean that learning becomes being told the "right" way to do some-
thing and then verifying through practice that this way is useful. It denies 
the more playlike mathematical processes such as looking for quantitative or 
spatial aspects in a situation, looking for relationships, and guessing at patterns. 
In "playing" with physical materials and pictorial images, the student can bring 
his own ideas to bear and extend them to include new notions. 
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If the above arguments are convincing, the teacher is tempted to order a 
lot of materials or open the mathematics laboratory manuals and get on with the 
business of playing with mathematics in any form. But the business of learning 
mathematics is not that simple. Whether the activity is solving a problem, proving 
a theorem or applying mathematics to everyday life, mathematics means successfully 
working with symbols. Thus in our "play" (presenting activities-oriented expe-
riences to students), we must ascertain that it will contribute to later symbolic 
activity. In particular, we must be certain that the student will not have to un-
learn what he learned from his activity work in effectively dealing with mathematics 
symbolically. To insure this, the teacher must see that the mathematical form in 
the activity should be at least analogous to the later symbolic form. Perhaps 
an example will be useful. 

An activity which one can do with congruent square tiles is to try to make 
rectangles 2 units on one side out of sets of tiles. ror example, sets of 
4 and 6 admit such rectangles while 7 does not. 

Quickly the student sees numbers as falling into 2 sets, the evens whose 
t he sets make into "2 x n" rectangles and the odds whose sets make "rec-
tangles with tails". 

14   15 9 

Once this classification is made, the student might "add odds' in the fol-
lowing concrete way and discover that an "odd plus an odd is an even". 

Now of course the mathematical activity would not have to involve physical 
materials. Students who could divide by 2 could make the original classification 
and by the following type of exercise: 

11 +7= 18, 19+13=32, 3+5=8 

induce that "an odd plus an odd is even". 

Since this symbolic activity is so easy, why all ~~he fuss about concrete 
activity? The answer is "form". Adding 11 and 7 physical ly in the manner above 
is powerfully suggestive of the symbolic proof of the theorem: 

odd odd 
(2n + 1) + (2m + 1) = 2n + 2m + ..2.. 

even 
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Adding 11 and 7 or 101 and 93 symbolically makes no contribution to the form of the 
matherriatics. Thus though both activities allow for discovery, the physical ac-
tivity allows for seeing more mathematics than the symbolic activity. 

In answering the questions, "Why use physical and pictorial models?"~ "Why 
use labs?", or "Why use activities?" a teacher might consider the following guide-
lines which summarize the section above. 

1. Activities with models provide an appropriate setting for development of math-
ematical ideas for students in elementary and junior high school. They can 
provide an appropriate bridge to the world of ideas and symbols. 

2. Activities provide one opportunity for effective "play". During such "play", 
students can exercise such processes as seeing the mathematics in a situation, 
observing possible relationships and guessing and testing personal mathematical 
ideas. 

3. To realize the above in a way which most contributes to further mathematics 
learning, the teacher must choose activities which best "form" mathematical 
ideas. 

7U PULyNUMIALS ANA SACK AGAIN 

Once one has a basis for using activities, the question of how to do so 
effectively arises. Can one use activities in a variety of contexts and can one 
do so without lots of fancy materials? What follows is an answer to these 
questions. 

The activities designed below relate to mathematics which has traditionally 
been in the curriculum for Grades IV to X. All of the activities are based on the 
following physical materials: 

1. A large number of squares (1/2 to 3/4 inches on a side) of either oak tag or 
plastic. 

2. A large set of cubes (1 cm. to 3/4 inch on a side). 

3. Coordinated sets of squares and rectangles (such as 7 x 7 squares, 7 x 1 rec-
tangles, unit squares) of wood or tag-board. 

4. Grid paper. 

5. Sets of colored oak-tag rectangles (1" x 2"). 

Several of the activities are just described; others are given in the form 
of activity cards. The methods of use can vary. The whole class can work in-
dividually on the same activity interspersed with teacher-direction or class 
discussion. Or the class may work in small groups, each group working on an in-
dependent activity. Above all, the activities are merely suggestive of things 
you can do to enrich the mathematical experience of your students. 
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Bu~%edi..ng u~ {~actarv~ 

Materials: A set of 25 to 40 squares of plastic or tag for each student 
or group. 

CARD Al 

How many rectangles can you make from 6 squares? Here are some. 

3 by 2 2 by 3 6 b y l 

The label below the rectangle tells how we describe each rectangle. 
Complete the following table: 

Number of Squares 

1 
2 
3 
4 
5 
6 

8 
9 

10 
11 
12 

How many 
Rectangles Rectangles 

6 by 1, 3 by 2, 2 by 3, l b y 6 

(table can be extended to suit your class) 

4 
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CARD A2 

Explorations 

1. For what number can you make the fewest rectangles? 

2. List those numbers for which you can make only 2 rectangles. 

3. Are there any numbers for which you can make squares? 

4. Tell the number of squares used in these rectangles: 
(a) 4by2   (d) 7by3  
(b) 1 by 5   (e) 4 by 5  
(c)12 by 8   (f)30 by 20  

How do you find the number? 

5. There are many other things which you can explore. Collect information 
or make charts on the following: 
(a) Are the number of squares and the number of rectangles you can make 

related? 
(b) For 4 squares, the numbers used in describing the rectangles are 

1, 2, 4. The sum of these is 7. For 5 squares the numbers are 1,5. 
This sum is 6. Make this kind of sum for all the numbers in your 
chart and tell about any patterns you see. 

Note: There are many uses for Card A2. Clearly the exercises mentioned 
in point 5 are more sophisticated and could be used as projects. In 1-4, little 
verbalization is called for. Yet these activities and their results have the 
form usable in the symbolization of factors and usable in the definition of 
primes or perfect squares. An alternative representation for the chart in Al 
is a class display board to which students contribute correct rectangles: 

Number Rectangles 

12 x 1 

12 
2x6 

13 
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This chart could then be used for later discussion. Another display device 
built by children is various "rectangle trees" for numbers: 

2 ~ 
r 

r 

T2 

6 

12 

r 

 > 3 

sT 

-~j 1 ❑ 

12 = 1 x 12 = l x 4 x 3= l x 2 x 2 x 3 

12 = 1 x 12 = l x 2 x 6= l x 2 x 2 x 3 
3 

12 

An Alternative to Card Al would use cubes. 

—~ z 

3 

Piling Cubes 
If you have 6 cubes you can pile them in several ways so that the 
piles are the same height. Here are some. 

1 pile of 6 ,___ 

Fill in the chart. 

6 piles of 1 

Number 
1 

2 

Ways of Piling 

2 piles of 3 

This problem; although equivalent, seems simpler than the rectangular 
problem and can be worked on successfully by children even as young as 6 or 7. 

lAs a teacher, you could give this assignment over a 3-day period and then collect the re-
sults on a chart on the board. Try to collect as many different ways as possible for each 
number. 
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Ptc,%me bag 

The game, prime bag, stretches the concept of using squares, but it is 
a simple game dealing with primes. The game can be used with a whole class or 
with small groups. 

Each student gets a small bag containing squares, each representing a 
prime number. There are 5- 2s; 4 - 3s; 3 — 5s and 2 of each other prime up 
to and including 23. 

contest: How many numbers from 1 to 100 can you make up using the numbers 
in the bag and the operation of multiplication only? Make a list of all of your 
"successes". 

Example: 30 = ~5  x ~3 x a2 (5 x 3 x 2) 

35 = ~5  x n7 (5x7) 

Questions: 
(a) How many different ways are there to construct each number? (This leads to 

the Fundamental Theorem of Arithmetic.) 
(b) Are there any numbers you can't build? If so, how can you describe these? 
(c) What is the largest number you can build using the squares in the bag and 

multiplication? 

Pa~ynam~.af. ~uzz.~e~s 

Materials: For each group a set like the following: 
3 blue squares - 12 cm. x 12 cm. 
10 blue rectangles - 12 cm. x 1 cm. 
10 red rectangles - 12 cm. x 1 cm. 
30 blue squares - 1 cm. x 1 cm. 
30 red squares - 1 cm. x 1 cm. 

All of the puzzles have the same direction. Given a certain subset of 
the set given above, make a blue rectangle. For example: (in the diagrams, 
unshaded will represent blue; shaded, red.) 

Given Rectangle 

(12 x 12) + (2 x 12) + 1 = (12 + 1) x (12 + 1) 

or 122 + 2 x 12 + 1 = (12 + 1)2

or (if the big square is considered x2, the rectangle x and each unit 1) 

x2 +2x+1 = (x+l) 2
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These puzzles can be done by individuals guided by an instruction sheet, 
or the 2-person game Rectangl-it, may be played. 

Rectang~2--%t 

Materials: Like those described above. 

Rules: 

1. There are 2 positions - Setter and Maker. 
2. On each play, the Setter sets the given subset of the playing set and acts as 

timer 
3. On each play, the Maker attempts to make a rectangle within 3 minutes. 
4. Scoring: If the Maker completes a rectangle in less than: 

1 minute: 3 points 
2 minutes: 2 points 
3 minutes: 1 point 

If not, the Maker either gets no points or calls "no rectangle". If he can 
show that no rectangle can be made, he gets 3 points. If he calls "no 
rectangle" and one can be made he loses 3 points. 

5. In each round, each player is the Setter and the Maker once. 
6. A game is 4 rounds long. 

Mvne ~uzz~.e~ 

Given below are some puzzles, solutions and records. It is important 
that students, whether individually or in a game setting, keep accurate records 
of their attempts. From studying the diagrams and symbolic records, the student 
will be able to see the forms useful in factoring polynomials. 

PUZZLE 1 : 

Given 

J 

❑ ❑ ❑ 
❑ ❑ ❑ 

Record 

122 +5x 12+6= (12+3) ( 12+2) 

or x2 +5 x+6= (x+3) (x+2) 
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PUZZLE 2: 

Given 

❑o❑ 
2x2 + 5x + 3 = (x + 1) (2x + 3) 

Rectangle 

 ~❑❑❑ 

Note: Doing only a few such puzzles gives .insufficient experience. 
Doing a large number allows the students to find relevant ideas such as "the 
factors of the constant are important". It is important for students to note 
that just as factoring numbers involved building rectangles, factoring poly-
nomials involves building rectangles. This enables this "puzzle" activity 
to significantly contribute to polynomial problems. 

PUZZLE 3: 

In this puzzle, the shaded areas stand for red and the unshaded for blue 

Given Rectangle 

❑ ❑ ~ ❑ ❑ ❑ 

Record 

I2-z 

M 
'N 

12 2 - 5 x 12 + 6 = (12 - 3 ) (12 - 2 ) 

x2 -5x+6= (x-3) (x-2) 

Note: This puzzle illustrates the use of negative coefficients and il-
lustrates that these puzzles can and should be challenging puzzles in their 
own right. It should be noted that red covers blue in these puzzles and that 
equal numbers of red and blue rectangles can be added without changing the 
character of the polynomial. 

These puzzles represent an activity which is preliminary to symbolic 
factoring and which allows students to play while preserving the form of later 
symbolic activity. If the teacher wants a more guided activity, she can con-
struct cards such as the following which makes use of 3 sets of materials like 
those described at the beginning of this section on polynomial puzzles except 
based on 5 cm., 7cm., and 12 cm. 
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CARD P1 

1. Choose one card representing 5 x 5; 2 representing 5 x 1; and one 
unit. 
Build a rectangle. 
What are its dimensions? ,  
This can be represented by the following sentence. 

2. Build a rectangle from one 7 x 7; 2, 7 x 1; and one unit. 
Dimensions:    . 
Complete the following sentence. 

72 +2x7+1 = (7+_) (~+ ) 

3. Build a rectangle from one 12 x 12; 2, 12 x 1, and one unit. 

Dimensions: 

Complete the following sentence 

12 2 + 2 x 12 + 1 ( ) ( ) 

4. Suppose you had to build a rectangle from one, 30 x 30; 2, 30 x 1 
and one unit. 

Dimensions: 

302 +2x30+1 

5. Complete the 

One 

= ( ) ( ) 

following chart: 

Two One Dimensions 

5x5 5x1 unit 52 +2x5+1 = ( )( ) 
40x40 40x1 unit 

_~ 
—_ —_, 402 + 2 x 40 + 1 = )( ) 

1000x1000 
nxn 
yxy 

1000x1 
nxl 
yxl 

unit 
unit 
unit 

_~ 
_~ 10002 + 2x1000+ 1 = 

_~ n2 +2n +1 = — —~ y2 +2y +1 = _~ 

)( 
)( 
)( 

) 
) 
) 

Complete the following: 

x 2 +2x+1 = )2 

Note: This card varies the same puzzle over several dimensions or numerical 
variants. It deliberately attaches the physical activity ~i.o the symbolic activity 
in a tightly prescribed form. It would best be used at a time when you really 
wished to concentrate on polynomial factoring and special forms. The previous 
puzzles and games might be profitable earlier. That is, this latter activity 
would best be used in Grades IX or X while the former could also be used in V, 
VI, VII or VIII. In order that this kind of activity be effective, cards for 
other factoring problems such as difference of squares would have to be used. 
Physical activity as a prelude to symbolic activity is not highly successful on 
a one-shot basis. 
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Sc~ucuces , nee~a.ng~.e~s and eam~u~.%ng 

Teachers are probably familiar with rectangular pictures as models for 
binomial multiplication. These models are based on an area interpretation of 
multiplication. Some examples are given below. 

1 

x 

2 

x + 3 

x2 
3x 

2x b 

(x+3) (x+2 

3 

c 

d 

= x2 +5x+6 
a b 

ac be 

ad bd 

(a+b) (c+d) =ac+bc+ad+bd 

2 

(2y+4) (y+2) 

a 

= 

2 

2y2 +8y+s 

4 

a a2 -2a 
(a-2) (a+3) 

=a 2 -2a+3a-6 
=a 2 +a-6 

3 3a -6 

Making up activities such as these in which students create pictures of 
binomial multiplication is a means of better understanding the use of the dis= 
tributive property. As is seen in example 4, this activity is interesting in 
itself. 

This model is even more interesting with polynomials of higher order. 

~x2

+x 

t5 

x2 + 2x + 3 

2x4 4x3 6x2

x3 2x2 3x 

5x2 10x 15 

(x2 +2x+3) (2x2 +x+5) = 2x4 +5x3 +13x2 +13x+15 

One useful pictorial activity is to have students diagram 10 such multiplications. 
They may do this rather blindly but very likely they will reduce this activity 
to a kind of algorithm and instead of using rectangles will simply use a grid 
as on p.82. 
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x2 + 2 x + 1 

3x2

Sx 

t7 

3x' bx3 3x2

'SX3 -lOX2 -SX 

7x2 14x 7 

(x2 + 2x + 1) (3x2 - 5x + 7) 

= 3x4 + x3 + ox2 + 9x +7 

After a few such examples, they will discover that like terms lie on the diagonals 
and hence invent a neat multiplication algorithm. 

The following card might be made up: 

CARD PD1 

Using the grid picture, make up a method for dividing polynomials. 

Note: This is an interesting open-ended activity especially if the poly-
nomials do not divide evenly. 

Another interesting pictorial activity is illustrated by the following 
card. This activity might be most useful in high school mathematics. 

CARD BT1 

1. Complete the following diagrams. 
x 1 

x 

1 

x 

x 

(X + 1 ) 2 = 

0 0 
X2 + 2X + 1 

x 

1 

(X + 1 ) ( x2 + 2x + 1) _ (x + 1 )s 

x2 2x 1 

2. Continue this process through (x-+ 1)io. 

3. Study the rectangles in each of the stages above. How many squares 
does each contain? Diagonals? 

Stage Squares Diagonals 
(x + 1)2 4 3 
(x + 1)3 6 4 
(x + 1)4 

~~ 
(x + 1)io 

4. How many squares and diagonals would (x + 1)Zo, (x + 1)ioo~ (x + 
have? 

What doffs this tell you about the number of terms in the product 
(x+l) 
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Bach. ~a the ward o~ v~umbens 

The last. section showed how area presents a nice algorithm for multiplying 
polynomials. Since numerical representations are polynomials of a sort, it 
should not be surprising that pictorial algorithms hold here as well. Given 
below are several illustrations of pictorial multiplication activity. 

CAR[) M1 -Decimals 

.2 

.03 

,—

.02 ~' 

.005 

. 0017 

• 00021 ~// 

. 02G91 

.O1 .007 

,.02 .002 .0014 

. 03 03 .00021 

CARD M2 -Rationale greater than 1 

2 1/5 x 1 3/7 

2+1/5 6/7+3/35= 2+7/35+30/35+3/35 

= 2 + 40/35 

= 3 + 5/35 

= 3 1/7 

2 1~5 

i 2 1/5 

6/J/ 3/35 
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CARD M3 - Whole Plumbers 

451 x 712 

28000 
7500 
2000 ~ 
110 ~ 
2 ~-

37612 

700 

10 

40 0 50 1 

.280_ %0 3500 700 

400~50~ 10 

800 100 2 

Note: These algorithms represent one "understanding" approach to computa-
tion. From the last example, one can see that these are just models for a par-
tial products approach. If one wished to add more realism to the problem, the 
student could construct "scale drawings" of the numbers for the sides of the com-
putational rectangle. 

SUMMING UP 

The excursion using rectangles from numbers to polynomials and back was 
done for 2 purposes. Most importantly, it illustrates how physical and pictorial 
activity contribute to mathematics learning at several grade levels through the 
use of playing with "form". The second purpose was to illustrate that physical-
pictorial activity was easy and inexpensive to use. 

From the above, a teacher could expect to use activity extensively and 
at little cost. If such activity proved effective, it would clearly be cost-
effective. There is no case from hard data that can be made that such activity 
represents a universal success. Yet it is hoped that the range of simple ac-
tivities suggested above will give you the "rect"-angle on the use of mathe-
matical activity in your classroom. From these suggestions, you may. see many 
more ways to simply design active mathematical experiences which will be fun 
and productive for your students. 
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