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Toying with TAD 
Psychologists doing research in the area of human problem-solving have 

discovered a phenomenom called "functional fixedness", which refers to the ten-
dency humans have to identify objects with some specific role or function. In 
many cases, this identification is so strong that it impedes productive problem-
solving. This occurs when problem-solvers cannot see some given object as being 
a tool which might help them because they have fixated on the standard function 
which the object serves and this use differs from the one required to solve the 
problem. 

Some mathematics teachers sometimes exhibit a form of functional fixation 
with respect to teaching aids. In this variation of functional fixedness, one 
particular use of a teaching aid is so strongly identified with the aid that it 
tends to block out its other potential uses. Hence, for example, Cuisenaire 
rods are employed almost exclusively to teach basic number operations to young 
children and rectangular grids are seldom used except for purposes of "graphing". 
To say that some mathematics teachers tend to functionally fixate with regard to 
some of their teaching aids is, in some sense, to say that they are not getting 
as much "mileage" out of these aids as they might. 

Of the many types of mathematics teaching aids, perhaps the worst "mile-
age-getters" of all are mathematical games. Many teachers use mathematical 
games as a form of reward: "If you answer all your questions correctly, then you 
can go to the back of the room and play 'Cube-Fusion' or 'Hi-Q'." and so on. 
While this is certainly one valid use of these aids, it is likely that fixating 
on the reward function may well lead a teacher to overlook some of the other 
functions this type of aid might serve. This would be most unfortunate since 
some of these mathematical games offer extremely rich frameworks for significant 
mathematical activity on the part of students. 

The remainder of this article attempts to substantiate this position by 
outlining some of the mathematical activities which might be generated by the 
structural game called "Think-a-Dot". Although this game is easily obtainable)
and can be found in many classrooms, it very seldom (at least in the experience 
of the author) is used as anything other than a toy. Following a description 
of the game (the manufacturers prefer to call it a "computer"), a range of ac-
tivities which "Think-a-Dot" (or TAD) suggests are briefly described. For the 
sake of convenience, these activities have been subdivided into those which 
might be appropriate for learners at 4 different educational levels: elementary, 
junior high, senior high and university. (Teachers should regard with some 
suspicion the recommended age levels for mathematical games. TAD is usually 
prescribed for Grades IV to VIII with almost no suggestions as to how it might 
be used.) Mathematics educators have recently started to consider "process 
objectives". It is worth noting that mathematical games like TAD provide an 
excellent framework for practicing mathematical processes such as "generalizing", 
"proving", "symbolizing" and "clarifying" (Morley, 1973). 

1"Think-a-Dot" is available from Western Educational Activities Ltd., 10577 - 97 Street, 
.Edmonton, for $3.75. 
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TAD is a small plastic box with dimensions approximately 6" x 5" x 1 1/2" 
(see photograph). On one face, there are 8 "windows" arranged in a 3-2-3 pattern, 
behind each of which the color yellow or blue appears. At the top of the box there 
are three "holes". When a marble is dropped in any of these holes, some of the 
windows "change color" and the marble emerges on either the right or the left 
side of the box. Inside the box there is a "flip-flop" inclination changing 
the color of its window at the same time. Certain positions or "states" can 
be set on the face by either tilting the box or by changing the color of each 
window individually. 

The following activities/games/problems are certainly not the only ones 
that are suggested by TAD nor are they necessarily either the most obvious or the 
best. They serve only to indicate some of the possible areas open to investiga-
tion. For any learner, the most interesting questions are the ones he himself 
poses. Students should be encouraged to generate, and to work on, their own 
problems. The job of the teacher in this case is to help students learn how to 
attack these problems. Conjectures should be formulated, tested and modified. 
In some cases, it may be possible to construct proofs. Some problems, such as 
those relating to symbolization and notation, will be found at all age and grade 
levels. However, it is to be expected, for example, that older students will 
have more sophisticated systems of representation and terminology. 

"Think-a-Dot" 
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ELEMENTARY LEVEL ACTIVITIES 

With elementary school students, one may wish to play various sorts of 
prediction games. 

One prediction game which any number of children could play is Exit I. 
In this game, each player chooses an "exit side" and drops marbles until a 
marble exits on the "wrong" side. The winner is the player having the highest 
number of correct exits after some fixed number of turns. A variation on this 
basic theme can be introduced by limiting the number of drops that any player 
can make in a row in any one hole. 

Exct 11 

In Exit II, each player predicts the side that a marble, dropped in a 
particular hole, will exit on. The winner is the player having the most correct 
predictions after, say, 10 drops. Amore difficult version of Exit II is one 
in which the blank face of TAD, rather than the window face, is facing the 
players. 

Ore-Chav~y e 

A type of two-player game suitable for this level is the One-Change game. 
In this game, a player chooses one of the 8 windows and challenges his opponent 
to have it changed in color after, say, 3 drops. After perhaps 5 turns, the 
player who has most frequently been able to meet his opponent's challenge is 
the winner. Variations can be introduced by limiting the position of the chal-
lenge holes or by increasing the number of holes to be changed. 

JUNIOR HIGH LEVEL ACTIVITIES 

At the junior high level, students should be able to work on problems 
such as those relating to a binary representation of the states of TAD. How 
many different states are there in TAD? How can these states most conveniently 
be represented? According to the representation(s), what characterizes all 
states which have a blue window in the upper left-hand corner? 

Given one state, how many drops are required to change TAD to another 
given state? If it is possible to move from one state to another by a series 
of drops (Note that this isn't always possible:), is this number of drops 
unique? (It isn't, but what can you say about it?) 

Competitive games appropriate for this age group include: the Ratio 
game (from a given state, one player challenges another to make the ratio of 
blue windows to yellow windows say 3:5, in as few drops as possible); the 
Maximum-change game (from a given state make, say, 3 drops and change the colors 
of as many windows as possible); the Symmetry game (in as few moves as possible 
produce, say, a top row which is color-symmetric, or anti-symmetric, to the 
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bottom row); and the Lines game (from a given state, produce after, say, 3 drops 
as many blue or yellow "lines" - three windows in a row - as possible). 

SENIOR HIGH L~V~L ACTIVITIES 

Senior high students might like to address themselves to TAD problems 
such as "accessibility", "operator analysis", "proof" and "duality". 

Acce~~tib-i.?.t~y 

From a given state, only certain other states are accessible. These 
are the states that can be reached after a series of drops. How many of these 
accessible states are there for any given state? Characterize them. Does 
your representation method give you any insights into the problem of accessibil-
ity? What does "parity" have to do with accessibility? Put an upper limit on 
the number of drops required to transform a given state into some other accessible 
state. 

O~elccrtan Avia~.y3~ 

Consider any finite sequence of drops to be an operator. (Use some 
method of distinguishing the 3 different types of drops. We will use "1", "m" 
and "r" for drops in the left, middle and right holes respectively.) How many 
"essentially different" operators are there? (There are 128.) Given any operator 
(say lmlrmmrllmrllrll), can you find its "canonical" representation? To what 
extent are operators independent of states? 

Pn.aa 

Prove the following "theorems" about operators: 

1. 1a=m8=ra=1 (the identity operator). 

2. 12m2r2= 1. 

3. lm=m1, lr=rl, mr=rm. 

For example, tc prove tha~ 1a-1, consider the fol~;owing diagram which 
shows the number of "window changes" brought about by 8 drops in the left hand 
hole. 

Generalize Theorem 2. 

Prove one part of Theorem 3 in 2 different ways. 
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Du.a.P..(x y 

Call states which differ in color in every window dual states. Call an 
operator which transforms a given state into its dual, a dualizing operator. Is 
the dual of a given state always accessible from that state? (Yes. Proof?) 
What is the minimum number of drops in a dualizing operator? Give an example of 
a state which dualizes in this number of drops. How many of these states are 
there? Characterize them. How many states can be dualized in 4 drops? General-
ize. Prove. Define "inverse-operator". Which operators are self-inverse? 
What is the relation between self-inverse operators and dualizing operators? 

UNIVFRSITy LFVFL ACTIVITT~S 

The following activities involve concepts not usually encountered at the 
secondary school level. They might, however, provide an introduction to such 
concepts for the capable high school student. In fact the number of quite 
sophisticated mathematical concepts embodied by this so-called toy is surprisingly 
high 

TAD a~ campusetc 

From a mathematical viewpoint all digital computers are finite state ma- 
chines Or dutomata. A finite state machine is "a five-tuple [A, S, Z, u, v] 
where A is a finite list of input signals, A = ao, al, ..., an Z is a list of 
output signals, Z = Zo, Z1, ..., Zm ; S is a Set of internal states, 
S = so, sl, ..., sr u is a next--state function from SZA into S and v is an 
output function from SZA into Z (Birkhoff & Bartee, 1970, p.68)". 

Can TAD be considered a finite state machine? If so, what are the values 
of n, m and r? Is it possible to construct a state diagram and a state table 
here? (See Berkhoff and Bartee, 1970, especially Chapter 3, for an elaboration 
of this topic.) 

Gtcau~-~heanett.c u~s~ec~ a~ TAD 

Does the set of operators, G, form a group? If so, what is the order 
of the group and what properties does it have? Consider the set of self-inverse 
operators, H. Is H a group? Can you find a subgroup of H? Is this a normal 
subgroup? Why? What special set of operators is a subgroup of H? 

Consider. the Abelian group, M, which has a presentation a,b,c: 

a8=b8=c8=a2b2c2 Is M isomorphic to G? (See Macdonald, 1970, especially 
Chapter 8 for an elaboration of this topic.) 

Cam~u~etc-~-imueuti..an a~ TAD 

TAD presents many opportunities for computing science students to practice 
their programming skills. One good project, particularly for students who have 
access to some form of visual display apparatus, is the programming of a computer 
simulation of TAD. It may also be interesting to consider TAD-like systems which 
differ in only a few ways from TAD. 
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What Boolean algebra aspects does TAD have? How is the question of ac-
cessibility related to the concept of equivalence classes? 

CONCLUSION 

In the preceding sections, an attempt has been made to substantiate the 
claim that there is more mathematical potential in some common teaching aids 
than is usually recognized. Although TAD may be a particularly rich situation, 
similar activities can be created centering on other aids. The mutual formulation 
and investigation of such activities is, in the opinion of the author, a most 
worthwhile pursuit for both mathematics teachers and mathematics students. 
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