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Editorial 
a~P+~a aN~ v~u~Ga 

This publication marks the end of one era and the beginning of another 
with respect to Mathematics Council, ATA (MCATA) publications. Beginning in 
1964, MCATA adopted a policy of producing an Annual each year, whose purpose was 
to help keep members informed on major ideas in mathematics education and to give 
members practical ideas to help them do a first-class job in the classroom. 

At a recent executive meeting, it was decided to abandon the idea of an 
Annual but not the philosophy of a major annual publication. The pressure to 
produce an Annual in the year for which it was scheduled and the feeling that 
the prominent dating of a publication might "outdate" it long before the material 
was out of date were the two major reasons for this decision. 

Beginning with this publication, the Mathematics Council has embarked on 
a series of monographs to appear at the rate of more or less one per year. Mono-
graph No. 2 is already in preparation. It will consist of teacher-developed 
activities keyed to the Alberta Curriculum Guides. Some plans have been made for 
Monograph No. 3 and an editor has been appointed. 

The executive believes that this change will better reflect the purpose 
of the major MCATA publication without decreasing the service of the Council to 
its members. 

PURPOSE OF TH6 MONOGRAPH 

The general purpose of this first monograph is to demonstrate that many 
mathematical concepts at all levels can be taught with very simple manipulative 
aids. Mathematics teachers have always been ingenious at devising their own 
aids. This skill is as important today with budget restrictions on every side as 
it was years ago when school administrators thought that all you needed to teach 
mathematics was a textbook and a piece of chalk. The need for children to manip-
ulate has been well-documented in professional literature. 

The specific purpose of this monograph is to show the versatility of 
relatively simple and inexpensive manipulative aids. Some of the articles demon-
strate horizontal versatility; that is, the author concentrates on a narrow range 
of grade levels and shows how an aid may be used to teach a number of different 
mathematical concepts at that level. Other articles demonstrate the vertical 
versatility of an aid; that is, they show how an aid can be used to teach mathe-
matical concepts over a wide range of grade levels. Still other articles demon-
strate both horizontal and vertical versatility. 

OV6RVI6(~ 

It may be wise to begin with a word of caution. We should not use manip-
ulative aids just for the sake of using an aid. The aid must fit into our ob-
jectives for our lesson and program. In the first article, Robert E. Reys out-
lines some very useful considerations for anyone using manipulative aids. 
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The horizontal versatility of the geoboard is well illustrated by Werner 
w. Liedtke. He outlines a number of geoboard activities covering a wide range 
of elementary school topics including number, operations, patterns, geometric 
figures, measurement, graphing, fractions and games of various kinds. T.P. Atxin-

son shows how popsicle sticks can be used to teach number, numeration, and geo-
metric concepts. 

Separate articles by sr. Marie Benoit and J.E. xirkpatricx outline aids 
for use in skill development. Sr. Benoit outlines some activities with wooden 
cubes while Joan Kirkpatrick suggests a number of activities and easily-constructed 
devices to provide computation practice. 

The use of thumbacks in developing concepts of weight and probability is 
suggested by w. George Cathcart. Mary A. Beaton outlines 10 experiences for 
developing concepts of 3-D space with materials such as straws, pipe cleaners, 
paper, cardboard containers, cubes, and tin cans. 

Beth Blackall gives a number of suggestions for open-ended activities 
with shapes cut from a 12" by 12" floor tile. The activities suggested demon-
strate both the vertical and horizontal versatility of a very simple manipulative 
aid. 

Logical thinking can be developed through the use of attribute blocks. 
An article by James H. Vance contains some valuable games and activities using 
attribute blocks. 

Separate articles by Thomas E. Kieren, Bill Higginson, and Alton T. olson 
clearly demonstrate that much mathematics can be derived from simple aids. Kieren 
develops a number of mathematical concepts from upper elementary school through 
high school using a simple rectangle. The toy, Think-a-Dot, is used by Higginson 
as a source of mathematical activities from elementary through university level. 
Olson outlines five methods, all involving simple aids, for representing a re-
flection in the plane. 

This monograph ends with a bibliography compiled by Bi11 Higginson. Let 
us not forget that books are invaluable aids in teaching mathematics. 

THANKS 

The editor is very thankful for the excellent cooperation received from 
all contributors.. In particular, thank you for taking the time to write quality 
papers. A word of thanks is also due Hilda Lindae and the staff at Barnett House 
for their fine work in the final production. 

Hopefully, mathematics teachers will find in this monograph a number of 
worthwhile aids to assist in the teaching and learning process, which is what 
education is all about. May the ideas presented here trigger your imagination 
with respect to the mathematics which can be found in many common concrete objects 
not mentioned in this monograph. 

The Editor 
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Considerations ~Or teaehers using man~ulative materiak 

Classroom teachers of mathematics are witnessing an unprecedented period 
of proliferation in manipulative materials. Commercial catalogs list a great 
variety of available materials; professional journals carry many advertisements 
claiming that this device or that aid will provide a panacea for learning a cer-
tain mathematics topic; and professional meetings are frequently inundated with 
exhibits displaying new manipulative materials. This influx of newly available 
materials has precipitated many problems. The wide range of quality found among 
various materials has made the problem of selection much more difficult. It 
has made it impossible to list all available materials and discuss the merit -
or lack. of merit - of each. It has created doubts in some teachers' minds about 
the educational value of the materials. It has raised additional teacher-
oriented questions such as, "What are some guidelines for selecting manipulative 
materials?", "What materials should be used?", "What are some dos and don'ts 
of using them?" 

During the decade of the '60s, several fine articles appeared discussing 
considerations in the selection of learning materials (Berger and Johnson, 1959; 
Bernstein, 1963; Davidson, 1968; Hamilton, 1966; Spross, 1964). The present 
article is limited to a discussion of manipulative materials as opposed to other 
teaching aids. Furthermore, it is addressed specifically to classroom teachers 
in an effort to provide some current rationale, as well as guidelines, for the 
selection and use of manipulative materials. 

LUHAT AR6 MANIPULATIV6 MATERIALS? 

The use of the term manipulative materials raises one fundamental question, 
namely, "Just what are manipulative materials?" In this context, manipulative 
materials are objects or things that the pupil is "able to feel, touch, handle, 
and move. They may be real objects which have social application in our everyday 
affairs, or they may be objects which are used to represent an idea" (Grossnickle, 
Junge, and Metzner, 1951, p.162). Hence, not all teaching aids or instructional 
materials are manipulative materials. Suffice it to say here that manipulative 
materials appeal to several senses and are characterized by a physical involve-
ment of pupils in an active learning situation. 

RATTONAL6 

In teaching mathematics, we are primarily concerned with concept formation 
as opposed to the memorization of facts. The mental processes involved in concept 
formation are much more complex than those associated with the memorization of a 
mass of isolated details. There is little disagreement among contemporary psycholo-
gists regarding the role of concept formation in the learning of mathematics. How-
ever, there are several existing theories about how to best foster proper concept 
formation. The results of recent psychological investigations into the ways chil-
dren learn mathematics by men such as Jerome Bruner, Zolton Dienes, Robert Gagne, 
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Jean Piaget, and Richard Skemp are beginning to have an influence on mathematical 
pedagogy. In short, more is known today about the way children learn mathematics, 
and the general nature of the mathematics they are capable of learning at various 
stages, than has previously been known. Ironically, it is still not known pre-
cisely how children learn, but the efforts of researchers are continually provid-
ing new evidence to suggest (and oftentimes refute) various learning theories. 
Since learning is an individual matter and invariably dependent on numerous factors, 
some of which are quite elusive, it is highly unlikely that a comprehensive learn-
ing theory that is completely satisfactory to all people will evolve in the fore-
seeable future. 

A comparison of prominent learning theories will not be made here, but 
it seems appropriate to identify the following statements, subscribed to by most 
learning psychologists: 

1. Concept formation is the essence of learning mathematics. 
2. Learning is based on experience. 
3. Sensory learning is the foundation of all experience and thus the heart of 

learning. 
4. Learning is a growth process and is developmental in nature. 
5. Learning is characterized by distinct, developmental stages. 
6. Learning is enhanced by motivation. 
7. Learning proceeds from the concrete to the abstract. 
8. Learning requires active participation by the learner. 
9. Formulation of a mathematical abstraction is a long process. 

This list is not exhaustive, nor are the statements independent. In fact, 
they are closely interrelated. Suffice it to say that the above statements . 
the basic foundation underlying the rationale for using manipulative materials in 
learning mathematics. 

Many prominent mathematics educators have strongly urged greater use of 
manipulative materials in teaching mathematics. The rationale for this emphasis 
seems educationally sound. Unfortunately, research studies in this area have 
"not been conclusive in either supporting or refuting the value of manipulative 
aids" (Beougher, 1967, p.31). Most of the questions cited by Brown and Abell 
(1965, p.548), such as, "Are there certain manipulative devices that lend them-
selves better to different methods of instruction?" and "Will a device help one 
child and hinder another?" are yet to be answered. One can only hope that quality 
research focused on manipulative materials and mathematics learning will provide 
some objective evidence relevant to the issues. In the meantime, classroom teach-
ers are still faced with the problem of selecting and using manipulative materials 
in their classroom. 

S~L~CTION CRITERIA 

The rapid increase in available commercial materials has made the job 
of selection not only difficult but also more crucial as the market is flooded 
with products. There are many criteria to consider in developing and procuring 
manipulative materials. In order to simplify this discussion, only important 
criteria in two basic categories, namely, pedagogical and physical, will be 
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considered. The proposed criteria are not exhaustive, nor is any hierarchy of 
importance suggested by the order in which they are discussed. Although some 
considerations are more significant than others, the relative importance at-
tached to each criterion should be determined by the teacher. Any final evalu-
ation of manipulative materials should weigh strengths and weaknesses against 
the educational potential. 

Pedagogically there are many criteria to consider in selecting manip-
ulative materials. One of the most important considerations is whether or not 
the materials serve the purpose for which they are intended. Furthermore, do 
these materials do something that could not be done as well or better without 
them? Since mathematics is mental, do the materials develop the desired mental 
imagery? 

The following criteria should be included in any list purporting to 
identify pedagogical considerations in the selection of manipulative materials: 

1. The materials should provide a true embodiment of the mathematical concept or 
i deas being explored. The materials are intended to provide concrete represen-
tations of mathematical principles. Therefore it is important that, above all 
else, the materials be mathematically appropriate. 

2. The materials should clearly represent the mathematical concept. ConCeptS 
are embedded so deeply in some materials that few, if any, pupils extract 
relevant ideas from their experience with the materials. This problem is 
further compounded by materials that have extraneous distractors, such as 
bright colors, which actually serve as a hindrance to concept formation. 
These experiences result in an "I can't see the forest for the trees" complex. 
This is, of course, not all bad, as it requires pupils to cull out extraneous 
data, yet in many cases such materials serve more as a deterrent to correct 
concept formation than as an aid. 

3. The materials should be motivating. There are many factors that ultimately 
contribute to motivation. Several of these, such as attractiveness and sim-
plicity, will be discussed later. Materials with favorable physical character-
istics will frequently stimulate the pupil's imagination and interest. 

4. The materials should be multipurpose if possible. That 15, they should be 
appropriate for use in several grade levels as well as for different levels of 
concept formation. Ideally, the materials should 'also be useful in developing 
more than a single concept. Such wide applicability is frequently achieved by 
using a portion or subset of material. For example, logic or attribute blocks 
have much multiapplicability through the careful selection and use of pieces. 

This requirement should not preclude the procurement and use of materials 
designed exclusively for embodying one concept. In fact, if use of certain 
materials results in concept formation that is otherwise impossible, then such 
items should be considered. In other disciplines, such as science and physical 
education, considerable funds are spent on devices that teach a single concept. 
Shouldn't mathematics teachers have a similar opportunity? Besides, using 
materials (even those designed for one specific function) often suggests ad-
ditional topics or concepts that might be explored. 
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5. The materials should provide a basis for abstraction. This underscores the 
importance of the requirement that materials correctly embody the concept. 
In addition, caution should be exercised to ensure that the concept being 
developed is commensurate with the level of abstraction needed to form 
the mental image. Care must also be taken to ensure that the level of 
abstraction is commensurate with the ability of the student to abstract. 

6. The materials should provide for individual manipulation. Thdt 1S, each pupil 
should have ample opportunity to physically handle the materials. This may be 
done individually or within a group, as circumstances dictate. Such manipu-
lation utilizes several senses, including visual, aural, tactile, and kin-
esthetic. In general, the materials should exploit as many senses as possible. 
Compliance with this generalization is particularly important with younger 
children. 

Physical criteria are important, since many sources of information avail-
able to teachers, such as commercial catalogs and brochures, describe physical 
features of the materials. A careful scrutiny of physical criteria would be help-
ful in initially screening manipulative materials. Among the physical character-
istics to consider in selecting manipulative materials are the following: 

1. Durability - The device must be strong enough to withstand normal use and 
handling by children. If and when maintenance is needed, it should be readily 
available at a reasonable cost. 

2. Attractiveness - The materials should appeal to the child's natural curiosity 
and his desire for action. Materials in themselves should not divert atten-
tion away from the central concepts being developed. Nevertheless there are 
certain qualities - such as aesthetically pleasing design; precision of con-
struction; durable, smooth, and perhaps colorful finish - that are desirable. 
Nothing can be more distracting than pieces of a tangram puzzle that do not 
fit proper-ly or a balance beam that doesn't quite balance. 

3. simplicity - The degree of complexity is of course a function of the concept 
being developed and of the children involved, but generally the materials 
should be simple to operate and manipulate. Although the materials may lend 
themselves to a host of complex and challenging ideas, for example, the at~ 
tribute or logic blocks, they should be simple to use. In an effort to con-
struct and use simple devices, there is the inherent danger of oversimplifying 
or misrepresenting the concept. In all cases, care must be taken to ensure 
that the device properly embodies the mathematical concept. In addition, 
the design of materials should not require time-consuming, mundane chores 
such as distributing, collecting, and keeping an extensive inventory record 
of a large number of items. 

4. size - The materials should be designed to accommodate children's physical 
competencies and thus be easily manipulated. Storage is an important consider-
ation directly related to size - no device should take up more than a reason-
able amount of storage space. Suitability of size is also important in pre-
venting misconceptions or distorted mental images within the child's mind. 
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5. cost. - The index used to assess the worth of materials must ultimately weigh 
their use against cost. In this context, cost is used in a broad sense. Thus 
cost. must include the initial expenditure and maintenance and replacement 
charges based on the life expectancy of materials under normal classroom use. 
The teacher-related cost, a function of the time required to learn how to use 
the materials effectively, is an item of utmost importance. It is not uncommon 
for someone other than a classroom teacher to order mathematics materials; but 
without proper planning, orientation, and preparation, it is ludicrous to ex-
pect: teachers to use new materials effectively with their pupils. Therefore, 
any purchase of new materials should be accompanied by a planned program de-

si gned to fami Ii ari ze the teacher wi th these materials . AS d result, dny COS t 
estimate for manipulative materials should reflect the teacher-education phase 
as well as the expenditure for materials. 

Teachers are often confronted with the dilemma of whether to use commercial 
or homemade manipulative materials. Many manipulative materials are relatively 
easy to make and can often be produced by the teacher and/or pupils. There are 
many priceless, intangible by-products, such as additional mathematical insight 
and increased motivation, that result directly from classroom projects. Never-
theless, one should weigh production costs for homemade materials, including labor, 
materials, and so on, against the cost of similar commercial products. Quality, 
of course, is another consideration. Frequently there is a marked difference in 
quality between homemade and commercially produced materials. 

It would be ideal if manipulative materials could meet all the afore-
mentioned criteria. Finding such materials would be tantamount to finding a 
"fish that runs fast and flies high". Consequently the search continues. It is 
hoped, however, that these criteria will provide teachers with some guidelines 
for both the selection and the use of manipulative materials. 

USING MANIPULATIVE MATERIALS 

There have been several fine lists summarizing uses and functions of 
teaching aids. Many such lists apply specifically to manipulative materials. 
Among the most common uses of manipulative materials are the following: 

1. To vary instructional activities, 
2. To provide experiences in actual problem-solving situations, 
3. To provide concrete representations of abstract ideas, 
4. To provide a basis for analyzing sensory data, so necessary in concept 

formation, 
5. To provide an opportunity for students to discover relationships and formulate 

generalizations, 
6. To provide active participation by pupils, 
7. To provide for individual differences, 
8. To increase motivation related, not to a single mathematics topic, but to 

learning in general. 

From this list, it should be evident that manipulative materials may be 
used in a variety of ways. It should also be noted that the mere use of manipu-
lative materials does not ensure that they are being used properly. Manipulative 
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materials must be used at the right time and in the right way if they are to be 
effective. Failure to select appropriate manipulative materials and failure to 
use them properly can destroy their effectiveness. Some specific dos and don'ts 
for teachers who plan to use manipulative materials follow: 

1. Do consider pedagogical and physical criteria in selecting manipulative 
materials. A prerequisite for effective use of manipulative materials is 
their appropriateness. The physical criteria for manipulative materials as 
well as the pedagogical considerations should not be taken lightly. 

2. Do construct activities that provide multiple embodiment of the concept. It 
is difficult, and often foolhardy, to abstract or generalize from a single 
experience. Thus the pupil should be presented with different situations man-
ifesting the concept or structure to be learned. For example, in developing 
the concept of three, children might examine sets with three elements for one 
activity. The number line, balance beam, and Minnebars might also be used to 
provide different embodiments for the same concept. The case for multiple 
embodiment has been ably presented by Dienes. Although the idea is pedagog-
ically sound, it has yet to receive widespread use by classroom teachers. 

3. Do prepare in advance for the activity. Be sure you, as the teacher, use the 
manipulative materials in the complete activity before they are used by pupils. 
As you make this trial run, you should consider questions such as: What pre-
requisite skills are needed before these manipulative materials are introduced? 
Are the directions clear, and can they be easily followed? Are there an ade-
quate number of leading questions? Are the manipulative materials commensurate 
with the level of the pupils and appropriate for the mathematical concept? 
What are some potential problem areas, and how might they be alleviated?. 

4. Do prepare the pupils. The type of preparation depends on both the manipula-
tive materials being used and the age of the pupils. Above all else, be sure 
the pupils are ready to profit from experience with the materials. Care should 
be taken to provide the necessary directions for beginning the activity. One 
must guard against telling pupils precisely what to do with the materials, as 
this might sterilize the learning experience. On the other hand, sufficient 
direction should be provided to prevent mass confusion, which may quickly 
lead to discipline problems. 

5. Do prepare the classroom. Check to ensure that all required materials are on 
hand. Also be sure they are operative, accessible, and available in sufficient 
quantity. The arrangement of the classroom furniture should be examined to 
ensure that it is suitable for the planned activities. 

6. Do encourage pupils to think for themselves. The use of manipulative materials 
in an informal situation provides an ideal climate for creativity, imagination, 
and individual exploration. This atmosphere encourages pupils to think for 
themselves. However, in order to get students to begin and then continue to 
think for themselves, it is imperative that the teacher provide encouragement 
of and show respect for pupils' ideas. A teacher's dismissal of a student's 
idea as being trivial, incorrect, worthless, and so on, will repress future 
ideas. 
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7. Do encourage group interaction. Di$cu$$lon within, d5 well ds among, groups 
can be intellectually stimulating. Encourage students to communicate with 
their peers and teacher. The importance of having this opportunity to tell 
one's thoughts, observations, and ideas cannot be overestimated. As pupils 
grow older, this freedom to express personal ideas is accompanied by a respon-
sibility to defend or at least support a position, should the need arise. 
Some teachers fear that one student will dominate a group of peers. This 
may sometimes happen; however, the careful selection of group membership can 
keep this problem at a minimum. 

8. Do ask pupils questions. It is often essential that certain points be called 
to the pupils' attention. Sometimes big ideas are missed completely. Other 
times one child may divert group attention to some minor or obscure point. 
In either case, you, as the teacher, must be prepared to ask pertinent lead-
ing questions. 

9. Do allow children to make errors. Some may view this as heresy. However, 
children must have an opportunity to be wrong or to make a mistake. Often 
greater learning and more lively discussion follow an incorrect answer than 
a correct one. Besides, the natural learning process is characterized by 
much trial-and-error learning. To do otherwise, that is, to attempt to elimi-
nate incorrect answers or faulty speculation, is to create a highly artificial 
learning situation. 

10. Do provide follow-up activities. Discussion, correlated readings, reports, 
and. projects, as well as replications of activities, enhance the prospects of 
learning. Searching questions forcing pupils to further analyze and syn-
thesize their results can be very productive, as they encourage students to 
"pull together the loose ends". They might be followed by additional ques-
tions that require extrapolation from these activities and encourage specu-
lation on the outcome of other related events. 

11. Do evaluate the effectiveness of materials after using them. Immediately upon 
the completion of an activity, it can be very helpful to note particular 
problem areas, strengths, weaknesses, and suggestions and to define areas of 
needed improvement as well as possible areas of modification. A continuous 
reevaluation of manipulative materials ultimately results in better materials 
as well as more effective use of them. 

12. Do exchange ideas with colleagues. Many new functions of manipulative mate-
rials result from actual classroom use. Sometimes pupils either consciously 
or unconsciously propose additional uses. At times, informal exploration 
with manipulative materials by either teacher or children suggests new ac-
tivities, which adds to the reservoir of potential uses for this set of manip-
ulative materials. A mutual exchange of ideas among teachers allows each to 
profit from the experience of the others. Perhaps you remember the fable: 
If I have a dollar and you have a dollar and we exchange dollars, we both still 
have a dollar. However, if I have an idea and you have an idea and we ex-
change ideas we both now have two ideas. 

Now for some teacher don'ts: 
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1. Don't use manipulative materials indiscriminately. Care must be taken t0 en-
sure that these materials properly embody the mathematical concept being de-
veloped. Be sure the materials and concept are commensurate with your objec-
tives and the pupils' level of development. 

2. Don't make excessive use of manipulative materials. They Should be used Only 
when they represent an integral part of the instructional program and when the 
program could not be achieved better without the materials. One exception to 
this might be manipulative materials that are directed more toward recreation. 
There are instances where the traditional curriculum fails to reach many pupils. 
Often the recreational aspect of manipulative materials has attracted the at-
tention of these youngsters and eventually paved the way to more academically-
oriented activities. Some teachers fear that excessive use of manipulative 
materials will lead to overdependence on physical representations. There are 
cases where the manipulative materials are used as "crutches". However, 
most pupils will gradually stop using the materials when they have reached a 
higher level of development. Signs of boredom from the children may indicate 
excessive use of manipulative materials, or may suggest the need for raising 
additional questions or extending the concepts being explored with the ma-
nipulative materials. 

3. Don't hurry the activity. Once the concept has been developed, most chil-
dren are eager to explore other ideas. However, every pupil should have 
ample opportunity to use the manipulative materials, thereby convincing him-
self of the principle or formulating the concept. Hurrying through the 
activity may impose unnecessary pressure on some pupils as well as creating 
a very artificial learning situation. Few individuals learn well when they 
are rushed. Some children may formulate the concept within minutes, whereas 
other children may require several days or perhaps months. Rushing children 
as they use manipulative materials does not solve the problem but rather 
compounds it. 

4. Don't rush from the concrete to the abstract level. Th1S 1S d Sequel t0 the 
previous suggestion. Perhaps the most frequent error in using manipulative 
materials is the speed at which children are rushed from the concrete stage 
to the symbolic level. There seems to be some myth that you can't learn 
mathematics unless you are actually writing something, that is, working with 
symbols. This is, of course, nonsense: Most good mathematics at the primary 
level is done without symbolization. In fact, if serious consideration were 
given to Piaget's research, nearly all mathematics in the primary grades 
would be at the concrete stage. It must be noted that symbolization occurs 
quite late in concept formation. Symbols are reserved for describing or making 
a record of the concept or mathematical principle. Hence, they can only be 
properly used after the concept has been abstracted. Since the process of 
learning a mathematical abstraction is time-consuming, it is ludicrous (at 
least with most elementary children) to use manipulative materials for one or 
two days and then move directly to the symbolic level. The wrong kind of 
experience may result in the children's viewing manipulative materials as 
toys or entertainment, in no way related to mathematics. 

5. Don't provide all the answers. In working with manipulative materials, pupils 
acquire experience in abstracting from a set of phenomena or a body of data. 

12 



As each child is actively involved in this process, conflicts frequently 
arise. One pupil has one answer, another child has a somewhat different 
result. Often the first reaction of the teacher is to settle the issue by 
providing the correct answer. It is difficult to resist the temptation to 
tell the correct answer, but resist the teacher must: To do otherwise is 
to discourage individual thought, squash natural curiosity to search for other 
solutions, promote dependence on the teacher rather than independence, and 
preclude further discussion of the problem, as everyone now knows the correct 
answer. On the other hand, you may decide to ask some leading questions; you 
may have the pupils explain their solution; you may wish to have them repli-
cate the activity using the manipulative materials; or you may pursue some 
other alternative. Regardless of the option selected, the teacher must re-
frain from serving as the purveyor of truth and source of all knowledge. Re-
member that to children and adults alike, "The art of being a bore consists 
in telling everything." 

CONCLUSION 

Perhaps the best one can do is .identify those materials that best meet 
the criteria and then concentrate on developing effective ways of using them. 
This requires several steps. First, the desired learning must be clearly identi-
fied. Then manipulative materials that will aid in the learning process need 
to be selected. The third step requires that these materials be integrated into 
an organized learning sequence, so that pupils progress from the simple and con-
crete to the complex and abstract. Only in this way can manipulative materials 
be an integral part of the mathematics education program. 

Remember that manipulative materials are not to be considered a sub-
stitute for teaching, - something one uses in lieu of teaching. There is not 
now, never has been, and, it is hoped, never will be a genuine substitute for 
a good teacher who knows how and what children need to learn and when they need 
to learn it: 
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The geoboard: a versatile instructional aid 

Manipulative materials play a useful role at most levels of mathematics 
instruction. Some can be used to predict or check answers when solving problems 
which involve the four operations; others can lead to the discovery of patterns 
and relationships; and still others, such as games, can aid the development of 
problem-solving strategies. It is the purpose of this article to illustrate, 
with specific examples, how the geoboard could be used in each of the settings 
described above. 

Commercial geoboards come in many shapes and sizes. However, they are 
relatively simple to construct from a piece of plywood (approximately 6" by 6") 
and 25 finishing nails. Observations seem to indicate that a 5-nail by 5-nail 
geoboard is more than adequate and that it is advantageous not to paint or draw 
lines onto the piece of plywood (between the nails) since they seem to distract 
from the constructions created by the children. If the spacing of the nails is 
a little less or a little more than one inch, even a small rubber band can be 
used to create various ingenious designs. Larger spacings (1 1/2" or more) seem 
to be unsuitable for shorter bands, tend to restrict constructions to only one 
area of the board, and frequently result in broken rubber bands when they are 
stretched across the whole geoboard. A spacing of exactly one inch seems to 
lead to the adoption of that unit whenever discussions arise and tends to make the 
students less flexible in adopting an arbitrary unit and/or name which at times 
could be advantageous. 

SUGGESTED ACTIVITIES 

The suggestions which follow are meant to achieve two puposes: 

1. Illustrate the versatility of the geoboard by describing some of its uses in 
a variety of topics and settings, and 

2. Present some sample instructions and questions which could be used in develop-
ing activity sheets for students related to these topics. 

Num b elc - vtum etcc~s 

1. On your geoboard, in how many different ways can you put one rubber band 
around 5 ( ~ ) (or 6, or 7, etc.) nails? Record and display your results. 
Example: 

C ~ 

O 
How are the arrangements different and how are they the same? 
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2. Put a rubber band around some nails and from these cards 

2 3 

nails enclosed. 

4 5 6 ... choose the correct name for the number of 

3. How many different numerals can you make on the geoboard with your rubber 
bands? Record and display. 
Example: 

D 

Match the numerals with the appropriate number of nails. 

Caunt,%ng 

1. If we call the nail labelled A, number 7, where we have started to count? 

Using the same starting point, what number would you assign to nail B?, 
C? and D? 

2. If the number 14 is assigned to the nail labelled A above, how did we count? 
Where did we begin to count? What number would you now assign to nails B, C, 
and D? 

3. Assign 18, 21, and so on to nail A and repeat the questions in part 2. 

Undi.na.2 numb eti 

The first task is to invent or agree upon a notation which would assign 
every nail on the geoboard a distinct number name. A variety of possibilities 
exist: (Row 2, Nail 4) or (R-2, N-4); (Up 2, Across 4) or (U-2, A-4) or (T2, -~4); 
(Down 2, Across 4) or (D-2, A-4) or ( 1 2,—+ 4); or an agreement is reached 
on the starting point and a simple number pair is used, for example, (2, 1) 
for the nail labelled A below. 
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After a notation has been agreed upon: 

1. Give a name to all the nails on your geoboard. 

2. Use a piece of colored construction paper or wooden beads to mark the following: 

a. Both parts of the number pair names (first and last number for each nail) 
are even. 

b. Both parts of the number pair names are odd. 
c. The sum of the first and second number for each nail is 6. 
d. Both parts of the number pair names are the same. 
e. The second part of the number pair name is twice as large as the first part. 
and so on. 

3. Use pieces of construction paper or beads to make a pattern on your geoboard. 
Write the number pair names for your pattern. What did you notice? 

4. Pretend there are streets along the rows and columns on your geoboard. 

The distance between any 2 nails (corners) is "one block". You are allowed to 
walk only along the streets. 

street block 

a. How many blocks is it for the shortest walk along the streets from corner A 
to corner B? A to D? A to C? C to B? 

b. How many different ways can you find to walk the shortest distance from 
corner A to corner B? 

c. Write the address (number pair) for corner A. Write the address for B. Is 
there any way of finding the answer for (a) from the addresses? How? Does 
it work for the others? Does it work for any two corners on your geoboard? 
Try it. 

Additi.a n/~ ub~ca.ct.%a n 

Addition and subtraction problems involving simple basic facts could be 
simulated on the geoboard. 

1. Put a rubber band around 8 nails. Put a rubber band around 7 different nails. 
Now many nails are in both rubber bands? How do you know? Can you find another 
way of showing the sum? (regrouping by fives, or by tens and ones) 

2. Put a rubber band around 13 nails. Put another rubber band around 6 of the 13 
nails. Of the 13, how many nails have only one rubber band around them? 
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3. Using 2 rubber bands, how many different ways can you find to show the number 
g? How are they different and how are they the same? 

Example: 

Use the same technique for 9, 12, 6, and so on. 

4. Repeat part 3 using 3 rubber bands. 

tu.P,t-i..~.ei,cati.a n/ div-ins tia n 

1. On your geoboard, show 7 groups of 3. What is the total? 

2. On your geoboard, show 5 groups of 2. Now show 2 groups of 5. How are they 
different? How are they the same? 

3. Put rubber bands across 3 rows on your geoboard. Take one rubber band and 
stretch it across one column. Count the number of nails which have 2 rubber 
bands around them, or the intersections, and record your results in the table. 

No. of Bands 
Across 

or Horizontal 

No. of Bands 
Up and Down 
or Vertical 

No. of Nails inside 
two Bands 

or Intersections 

3 
3 
3 
3 

Reorganize 
Do you see 

1 3 
2 
0 
4 

the data entered into the table (column 2 from smallest to largest). 
a pattern? 

4. Put a rubber band around 16 nails. If you use 2 other bands to make 2 _ 
groups of the same size, how many would there be in each group? What if you 
were to make 4 groups of the same size, how many would there be in each group? 
How about 8 groups? 

Putteh.~ 

1. Use this pattern. 

1 

C 
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a. Can you tell what the next 3 (or 4) would look like? Construct them on your 
geoboard and record your results in the table. Describe the pattern. 

Sketch Number of Nails 

A 

.. g 

C 

D 

E 

B 

0 

2 

b. If you add any 2 numbers from the table above, can you make the sum look 
like the sketches? Try it on your geoboard. 

c. If you were to multiply any 2 numbers from the table, will the product 
look like the entries in the table? Try it. 

2. Use this pattern. 

a. Find the next 3 (or 4). Construct a table. 
b. Add any 2. Construct your result. What can you say about the appearance 

of the sum? 
c. Multiply any 2. Construct the result. What can you say about the product? 

3. Follow the same 3 s teps for these patterns. 

a. 0 b. 

- 4. Combining the 2 previous patterns results in the following pattern. 
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Sketch Number• 

4 

9 

Triangles 

D 

a 
Sum 

1 +3 

3+6 

Describe the pattern. Does the pattern work for other "square" numbers? 
Use your geoboard to find out. 

5. a. Take a number from the table in part 1 and add it to a number from the table 
in part 2. Display the sum on your geoboard. Can you make the sum look 
like an entry in the table of part 1 or part 2? Try other sums. What can 
you say about them? 

b. Take a number from the table in part 1 and multiply it by a number from 
the table in part 2. Display the product on your geoboard. Can you make 
the product look like an entry in the table of part 1 or part 2? Try 
other products. What can you say about them? 

F~.g wcers 

1. Familiar figures 
a. On your geoboard, make figures that look like something in you~~ classroom; 

a kitchen; a store, and other places. 
Record, label, and display. 

b. Look at a figure someone else has constructed and try to guess what it could 
be after he has told you where it might be found. 

c. Does your figure look the same when you turn the geoboard? How many corners 
(sides) does your figure have? Can you make a figure with more (fewer) 
corners (sides)? 

d. Make a figure. Now use another rubber band and try to construct a figure 
which looks the same but is larger or smaller; longer or shorter; narrower 
or wider. 

e. Construct a figure which has 4 (or 3) sides which is lon~9 short; long and 
wide; long and narrow; short and wide; short and narrow. 
Record and display your results. 

2. Construct all the different 4-sided figures you can think of. Record, dis-
play and compare your results. 
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Examples: 

3. Do the same as in part 2, but with 3-sided or 5-sided figures. 

4. Construct different figures on your geoboard and record your results in the 
table. 

Number of 
Sketch Sides

3 

Corners 

3 

What is the pattern? Does it always work? 

S eg mev~t~ 

1. Try to make segments that are short; long; straight; "crooked". Record, 
display and compare your results. 

2. Construct segments that touch; do not touch; will never touch; cross each 
other. Record, label, display and compare. 

3. Construct various segments leading to 2 (or more) nails; which are equal 
in length; which are not equal in length. 

Atcea 

Call the size (area) of square A, one "unit". 

1. If figure A has an area of one "unit", use rubber bands to find the area of 
figures B, C, D, and E. 

2. Construct "gardens" with an area of 2, 2 1/2, 3, 6, 7 1/2, and so on units. 
Label and display your results. 
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3. Construct as many gardens as you can which have an area of 8 (or 12, and so 
on) units. Sketch, label, and compare your results. Now are the gardens 
different? How are they the same? 

4. Construct more gardens but always leave one tree (nail) in the interior. 

Example: 

Find the size of the gardens you have constructed and record your results in 
the table. 

No. of Posts ( nails) used 
Garden in the fence of garden 

Size of garden 

A 
B 
C 

3 

Build gardens with 6, 7, and so on fence posts. Don't forget the tree 
in the middle. Record your results in the table. Do you see a pattern? 
How could you predict the size of the garden from knowing ,the number of fence 
posts which were used? Does this work for bigger gardens? Try it. 

5. Construct gardens which have no trees in the interior. Count the number of 
fence posts, calculate the area, and record your results in a table. Find 
a pattern for these gardens. 

6. Construct gardens with 2 (3) trees in the interior. Count the number of posts 
used in the fence, calculate the area, and record your results in a table. 
Find a pattern for these gardens. 

Pe~u:me ten 

Call the distance between 2 adjacent nails in a row or column, one "unit". 

1 uni t {!~ 

1. Use rubber bands to construct figures that have a fence which is 4, 6, 8, 
10, and so forth units long. Record, label, display and compare your results. 
How are they different or how are they the same? 

2. Construct as many figures as you can which have a fence that is 12 (or 8, 
or 16) units long. Record your results in a table and display. 
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Sketch Length of fence 

c 12 

How are the figures different? How are they the same? 

Area and ~eJc.imeten 

1. Construct a number of different rectangular figures with an area of 8 "units". 
Record your results in a table. 

Sketch Area 
Length of fence 
or Perimeter 

8 

What can you predict about the area and perimeter of these figures? 

2. Construct a number of different rectangular figures with a perimeter of 12 
units. Record your results in a table. 

Sketch Dimensions Perimeter Area 

12 

What can you say about the dimensions and the area of these figures? 

G~ca~ly, 

1. John, Dick, Harry and George played hockey for the school team. The table 
shows how many goals each one of them scored in the last 2 games. 

Name No. of Goals 

John 
Dick 
Harry 
George 

2 
3 
1 
4 

Use 4 rubber bands and your geoboard to show these results. Label your 
graph and display it. 
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Example: 4 ,r--~ 

3 r-~ 

2 

1 

0 y ~~ _~ L Y 

J D H G 

2. Collect other information (such as hair or eye color, days away from school), 
construct similar graphs and display your results. 
Summarize the results shown in your graph by writing a story. Display the 
story. Which do you prefer, the graph or the story? Why? 

3. Line graph. Use one long rubber band and your geoboard to show the results 
from the table. Label your graph and display it. Collect other information, 
construct similar graphs, label and display them. 

Name No. of Pets 

Suzie 

Ann 

Caren 

Linda 

Joan 

3 

4 

0 

2 

2 

No~a..ti.on 

A 

B 

C 

4 

3 

2 

1 

0 

S A C L J 

Consider the following directions ?j~'~~,.r ``~,, and use the nail 
labelled A above as a starting point. Various directions can be taken to get 
from A to B. 

Examples: 

Can you think of others? Try them. 
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1. Put a bead or piece of construction paper onto the nails which would be the 
end point of the following instructions: 
a . A --+ 
b. A _._. _... --. 

d . A —. —. --. ~ } 
e . A —. --,~ t ~t 

What does this construction look like to you? Make up similar directions for 
a construction of your own. Write number pair names for a to a above. 

2. Write as many different directions as you can for a route from nail A to nail 
C. Compare your answer with a friend. Which one is the shortest? Which one 
is the longest route? 

J . Usin the nail labelled A as a starting point, could you find a nail for 
A.._ ~ ? Why or why not? Could you find it if you were to use another geo-
board? Make up some directional expressions which take you from A to a nail 
on the second geoboard. 

4. Using the nail A as a starting point, could you find nails for Al ~---> or 
A ~ ~ ~.-- .l ? Why or why not? How cowl d you solve these problems? 

H~,de and ~ eeFz ( ba~e~s h,%p ) 

Two contestants, or two teams, face each other in a game of "Hide and 
Seek". They construct on their •eoboard, hidden from each other's view, an 
agreed-upon figure (ship), ~ in any position they like. The task con-
sists of each person trying to ind the opponent's figure first, by taking turns 
and asking questions in terms of number pairs, for example, "Does your figure 
touch (1, 2)?" Positive responses could be marked with beads or pieces of con-
struction paper. The person who has determined the exact location of the figure 
first is then declared the winner. (After each positive response try to consider 
all the possible locations for the opponent's figure. Try to determine which 
"shot" or position could give you the most information when it is your turn to 
ask the next question.) Try to find a champion for this game in your group or 
room. 

T.ic.-lac-~a e; faun ~.n a naw: 

Two players take turns in placing different colored beads or pieces of 
construction paper onto the nails of the geoboard. The first one to get four 
in a row, column or diagonal is the winner. Are there any good (bad) moves? 
Why? Who is the champion in your group or room? 

Le~,teh. - me~s~sage~ (cads) 

1. How many different letters of the alphabet can you make on your geoboard? Are 
there any that cannot be made? Try as many as you can, sketch, display and 
compare your results. 
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2. Use rubber bands and follow these directions: 

call A, (1,1) a. Join (1,1) to 1, 3) 
and (1, 3) to (2, 1) 
and (2, 1) to (2, 3). 

b. Join (3, 1) to (3, 3) 
and (3, 3) to (4, 3) 
and (4, 3) to (4, 1) 
and (4, 1) to (3, 1). 

What does a and b say? 

3. Make up directions for a "secret" message of your own. Let a friend try to 
figure it out. 

Tnea.awce ku►tit 

1. a. Join (2, 2) to (4, 2). 
b. Join (3, 1) to (3, 3) 

and (3, 3) to (5, 3) 
and (5, 3) to (5, 1) 
and (5, 1) to (3, 1). 

The treasure is hidden where a and b intersect. What is its location? 

2. Make up directions fora treasure hunt of your own and let your friend try 
to find it. 

Fnacfi,%~ ws 

By assigning the value of "one whole" to either a row of nails, a row of 
squares or to the whole geoboard, various activities can be designed to illustrate° 
1. fractional notation or the meaning of fractions 
2. equivalent fractions, 
3. addition of fractions. 

Examples•   = Unit, then ~~ _ ? etc. 

.. 
=Unit, then _ ? etc. 

= Unit, then = ? etc. 

= Unit, then 
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CONCLUSION 

Some suggestions for activities have been made to illustrate that the 
geoboard can be used at any grade level for a great variety of topics. The 
aid has various other advantages: it withstands wear and can be constructed by 
the students, at least at the upper elementary level; concepts can be classified 
or reinforced through demonstrations, or the discovery method can be employed to 
teach these concepts; various settings can be created which could develop a stu-
dent's appreciation of mathematics, develop his interest, enhance his initiative, 
arouse his imagination and provide recreation and enjoyment. 
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Popsicle sticks as a manipulative device 

The teacher of elementary school mathematics needs a supply of varied 
manipulative materials for her own demonstrations and the pupils' exploration 
of mathematical ideas. Two important criteria for the choice of manipulative 
aids are availability and versatility in use. Popsicle sticks are one type of 
aid which meets these two criteria admirably. 

A popsicle stick of the !:ind discussed here is 11.5 cm. long, 1 cm. wide 
and 2 mm. thick. It is made of moderately soft wood, in natural color, and is 
quite well finished. Only very occasionally will it sliver and cause inconve-
nience to the user. The sticks are available .from dairies which produce pop-
sicles, at a price of approximately $1.35 per thousand, or from Moyer-Vico Ltd. 
for $1.65 per thousand. They are also available commercially in boxes of one 
thousand, under the trade name "Coffee Sticks" but the cost is nearly twice as 
much. 

There are several physical embodiments of mathematical concepts that can 
be demonstrated with popsicle sticks. In this article, some suggestions are 
made for number, numeration and geometry. The ingenious teacher will discover 
other ways to develop these and other concepts. 

NU~IIBFR ANa NUh1FRATIUN 

One-to-one correspondence is an important part of the initial development 
of the whole number concept. Popsicle sticks form useful sets of objects because 
they lie flat on a child's desk and do not make excessive noise. The sticks 
may be used as elements of a set to be placed in one-to-one correspondence with 
the elements of another set, or they may serve as connecting lines between the 
elements of two different sets. The teacher can use the sticks to cast shadows 
on a screen with the overhead projector, thus demonstrating one-to-one cor-
respondence between two other sets of shadow objects. 

For numeration experiences, the teacher can provide the children and her-
self with popsicle sticks and rubber bands. To demonstrate the numeral necessary 
to indicate the number of sticks in a set, the teacher first of all groups by lOs, 
with a small rubber band around each 10 sticks, then groups the lOs into groups 
of 10, with a stronger rubber band around each 10-10, and so on until no further 
grouping is necessary. The numeral for the total number is easily determined by 
indicating the number of each kind of group, beginning with the largest kind of 
group and ending with the number of loose sticks left over. 

Recognition of the number properties of sets, understanding of operations 
with whole numbers and use of the numeration system are woven together. The 
teacher must use her judgment as to when the sticks should be in loose sets 
and when they should be bundled in lOs and so on. Some examples of situations 
in which the. sticks are loose follow. 
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1. The teacher sets out 6 paper cups. She asks a child to bring her enough sticks 
so that she has one stick for each cup. 

2. Each child is asked to hold 3 sticks in one hand and 5 in the other. "How many 
sticks do you have all together?" 

3. "Pick up 12 sticks. Lay them on your desk in sets of 3." 
4. "Pick up 16 sticks. Make two equivalent sets with them." 

Situations involving addition and subtraction where "carrying" and 
"borrowing" occur should be demonstrated with sticks bundled according to the 
numeration system. In such cases, the union and separation of sets provide the 
basis for the operations with numbers and the grouping provides the basis for 
the algorithms used. Two examples should help to clarify what is meant. 

1. 87 + 45 = n 
In one place, the child has 8 bundles of 10 sticks and 7 loose ones. In 

another place, he has 4 bundles of 10 and 5 loose ones. If the two sets 
are put together, how many sticks will he have? The child is helped through 
the actions associated with the sentence as follows: 

7+5=1-10 and 2; 
8-lOs + 4-lOs and 1-10 = 13-lOs; 
13-1 Os = 1-100 and 3-1 Os; and finally 
87 + 45 = 1-100, 3-1 Os and Z = 132. 

2. 105-59=r 
The child has 1 bundle of 100 (10, lOs) and 5 loose sticks He must remove 
5 -lOs and 9 loose sticks. The actions are associated with the sentences 
as follows: 

1-100 and 5 = 9-lOs and 15; 
9-lOs and 15 with 5-lOs and 9 removed 
leaves 4-lOs and 6 = 46. 

When equivalent sets are involved, as in either multiplicative or divisive 
situations, the manipulation must demonstrate the distributive principle of multi-
plication and division over addition and subtraction. Again, two examples should 
help to clarify what is meant. 

1. 4x35=p 
The child has four equivalent sets of sticks, each set consisting of 3 'lOs 
and 5 singles. He is to combine them into one set and determine how many 
sticks there are. The actions are associated with the sentences as follows: 

4 sets of 5 singles = 20 singles = 2-lOs; 
4 sets of 3-1 Os = 12-lOs; 
12-lOs + 2-lOs = 14-lOs = 1-100 and 4-lOs, or more symbolically, 
4x35=4x (30+5) =4x30+4x5. 

2. 42 3=q 
The child has 4-1 Os and 2 singles. The task is to separate them into 3 
equivalent sets. One bundle of 10 can be assigned to each of the 3 sets. 
Then the remaining 10 is ungrouped and combined w'~th the 2 singles. The 12 
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loose sticks are separated into 3 sets of 4, and each set of 4 goes with the 
one bundle of 10. Thus 

4-lOs and 2 = 3-1 Os and 12; 
3-lOs and 12 divided into 3 equivalent sets yields 
1-10 and 4 in each set, or, 
4 2 3= (3 0+ 12 ) 3= 3 0;  3+ 12 3. 

G~OM~TRy 

Geometrical properties of equilateral polygons can be illustrated simply 
with popsicle sticks. Because the sticks lie flat on a plane surface, they can 
be manipulated easily. If permanent figures are desired, the sticks can be 
glued to railroad board or some other similar paper product. 

The teacher can discover activities for the children through experimenta-
tion. Here are some suggestions: 

1. Lay 3 sticks on the desk to form a triangle. Can you make triangles of 
different shapes? 

2. Lay 4 sticks on the desks to form a quadrilateral. Can you make different 
shapes? 

3. Can you use a fifth stick as a diagonal of the quadrilateral? 
4. Can you make a figure consisting of several triangles fitted about a central 

point? 

No attempt has been made to suggest the geometrical ideas that can origi-
nate from the activities. Any formalization of ideas might well ruin the effect 
of the experimentations. 

CONCLUSION 

In the teaching of mathematics, especially in the elementary school, it 
is important to look to simple materials for manipulative and illustrative pur-
poses. Because popsicle sticks are economical, easy to obtain, relatively non-
hazardous, easy to store and versatile, they should be in every elementary 
classroom. 
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Mumbo jumbo 

Wooden cubes are inexpensive, readily available) and versatile teaching 
aids. They can be used in developing concepts of number, operations, geometry, 
measurement, and other topics. 

OBJ~CTIV~S 

This article outlines 8 games using wooden cubes, designed to develop 
concepts of number and operations on numbers. Specifically, the objectives of 
these games are to: 
1. reinforce number combinations, 
2. consolidate the interrelation of operations, 
3. reinforce the identity elements of 1 and O, that is, multiplication by 1 and 

hence division by 1; addition of 0 and hence subtraction of 0; and multipli-
cation by 0, 

4. give practice in the use of grouping symbols such as parentheses, and 
5. provide enjoyment. 

MATERIALS 

The following materials will be needed: 
1. six wooden cubes (dice) - two red with numerals 0 to 5, two yellow with 

numerals 4 to 9, two blue with numerals 7 to 12. 
2. packs of instruction cards (for Game 8), 
3. counters (any small objects which can be groupedj, 

The dice are best made from 5/8" cubes, but one inch cubes are satisfactory. 

These materials are age-fair and non-insulting to older pupils who may be 
having trouble with simple number combinations. The simplicity of their design 
allows for flexibility of use at any age level. 

GAMS 

Game 1 

Use one die (specified by teacher according to child's ability). Throw 
it. Name numeral. Make a group that has that many counters in it. 

Game 2 

Use two dice. Throw one. Look at the numeral. Put the correct number 
of counters beside it. Throw the second die. Put the correct number of counters 
beside it. Has one group more? If so, which one? Or, are they equal in number? 

1Wooden cubes of any desired dimension can be easily made in a school shop. They are also 
available commercially from Moyer-Vico Ltd. for $5.10 per box of 100 plain or $5.95 per box of 
100 colored. 
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Game 3 

Take 2 dice. Throw them. Which number is larger? smaller? 

Take 3 or more dice. Throw them. Now put them in order, with the 
smallest on the left and the largest on the right. 

Game 4 

Take all the dice. Shake and throw them. Use as many as you wish to 
make an equation. 

For example: 

6-4=2 

Game 5 

ao 

D 

© 
~~ 

QO 
Shake and throw all the dice. Use as many as you can to make an equation. 

You may use any signs such as +, -, x, :, or symbols such as = and (). The 
player who uses the most wins. 

Game 6 

Shake and throw all the dice. Use all of them to make an equation. 
Choice of symbols as in Game 5. 

Note: Children become familiar with the identity properties 1 and 0 
as they manipulate their dice. 

Game ~ 

Shake and throw all the dice. Use all of them to make an equation. 

A bonus is given for each different operation used, for example, 6 points 
for the equation; 1 point for each operation; 2 points for using a fraction. 

Game ~ 

Use the pack of instruction cards. Shuffle it and put the pack face down. 
Each player in turn shakes and throws all the dice, picks the top card from the 
pile and follows the instructions for making his equation. 

Examples of instructions: 
- Include addition 
- Include two different operations 
- Include a fraction 
- No addition. 

Each pupil could make up his own set of instruction cards. 
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"... the conclusion is inescapable that children can study mathematics more satis-
factorily ►vhen each child has abundant opportunity to manipulate suitable physical 
Objects." (Goals for school mathematics, 1963, p.35) 



Simple computing devices for children to build and use 

The use of manipulative devices in teaching mathematics is becoming a 
widely accepted procedure and is supported by some research by learning theorists, 
and by practitioners - teachers themselves. Many teachers have long advocated that 
children need to manipulate a device or variety of devices before being required 
to abstract a concept or a model. Thus, there is available commercially an 
abundance of instructional materials designed to provide the concrete experiences 
necessary for the development of a child's concepts of number and space. One of 
the areas in which a large variety of aids is not available is that of computation. 
Yet, we live in a highly technological society in which computing devices or 
calculators play a major role; in addition, Man made use of computing devices even 
before numeration systems were fully developed. It is the purpose of this paper 
to outline a number of simple computing devices that elementary school children 
can build and use. One caution must be made: devices themselves will teach very 
little mathematics. It is their use under the guidance of a wise teacher that 
determines their effectiveness in learning. 

G6LOSIA (LATTIC6) MULTIPLICATION 

The gelosia or lattice method is one of the very first methods Man used 
to release himself from the tedious work of multiplication. The device consists 
of equal sized cells, each divided into two parts by diagonals drawn from upper 
right to lower left. The number of cells depends on the number of digits in 
each factor. For example, to multiply a three digit number by a two digit number, 
six cells are needed: 

To multiply 639 by 27, follow these steps: 
1. Place the digits of one factor at the top of each cell, and the digits of the 

other factor at the side. 
3 9 

z 

2. Multiply each digit at the top by each digit at the side. The product is 
written in the cell corresponding to each pair of factors. If the product has 
one digit, it is written below the diagonal. If it has two digits, the "ones" 
go below the diagonal and the "lOs" go above. 

~ 3 9 
~ 

2 ~o 
~ $ 

~, z 6 
2 / 3 

z 

7 
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3. To find the product, add the numbers in each of the diagonals. 
G 3 9 

~~, 
~~ 7,' z-- -  5-- -  3 

Pupils may also work on multiplying numbers having more digits, for ex-
ample 368 x 472; 4562 x 835. A discussion of "why it works" should point out 
that the diagonals separate the numerals according to place value. 

~ 
z ~ 

i 
s 

~ 
z 

2 
~ ~ 3 

NAPI6R'S BONGS 

7 

In 1617, a Scottish mathematician, John Napier, developed a mechanical 
crevice that simplified the monotonous work of long multiplication. His method 
~ade use of a set of numerating rods called Napier's "bones", which were based 
~n the gelosia or lattice method of multiplication. 

To make a set of Napier's bones, use 11 strips of heavy cardboard. On 
10 of them write the multiples of the numbers 0 to 9. The eleventh strip is 
used as an index rod and lists the digits 1 through 9. A completed set of bones 
is shown below. Notice that each one is actually a kind of multiplication table. 

O 
0 

0 
0 

0 
0 

O 

0 
0 

O 

0 
O 

0 
0 
0 

0 
0 
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0 

~6 

0 
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INDEX 

1 

2 

3 

4 

5 

6 

7 

8 

9 

To multiply 468 by 7, take the 4, 6, and 8 
bones and the index and place them as shown at the 
left. 

7 x 468 is shown in the seventh row. Add 
the numbers in the diagonals, as in the gelosia 
method. 

7 x 468 = 3,276. 

Pupils can discover how to use the bones 
to multiply by two and three digit numbers. The 
bones can then be used to check multiplication 
examples done the "ordinary" way. 

SLI~~ RULES 

Addi~~i.an and ~ub~hac~i.an ~.Q~de nuee 

Two rulers may be used as a very simple form of slide rule for addition 
and subtraction. Children can make their own by using two strips of heavy card-
board and marking a scale on each one, possibly using graph paper to assist them 
in making the scale. 

To add 7 and 5, for example, place one strip above the other and "slide" 
the top strip to the right, until its left or 0 end is above the 5 on the bottom 
strip. Find the 7 on the top strip and look directly below it to the answer 12. 

2 3 

' H S ~~ iz 

/D /2 
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The strips can be used for subtraction by simply reversing the above 
procedure. Any scale may be used on these strips as long as the same one is 
used on both strips. For example, a scale going to 20 would allow practice on 
all the addition and subtraction facts through 18; a scale going to 50 would 
provide examples of addition and subtraction of two digit numbers through 50. 
Addition and subtraction of fractions and decimals may also be shown. 

Mu,Q.ti.p.P.icati.on and di.v,%ddan b.?.%de xu.~e 

The basic mathematical idea behind this slide rule is the logarithm - an 
ic!ea for which John Napier was also responsible. (A logarithm is an exponent, 
-,nd exponential numbers are multiplied by adding the exponents. For example, 
42 x 43 = 4 z+s = 45. On a slide rule, the exponents are represented by distances, 
and two numbers are multiplied by adding distances.) 

The following diagram illustrates 2 x 3. Note that the "index" is now 
1, the multiplicative identity, rather than 0, the additive identity. 

3 
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The strips show the scale for amultiplication-division slide rule. 
The scale goes from 1 to 10; to make a slide rule with a scale from 1 to 100, 
simply put two of the D strips end to end, as shown in the following example, 
illustrating, 5 x 9 = 45. 

3 ! S 6 7 8 9 1 
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The second "D" scale can be thought of as representing the numbers from 
10 to 100. To use this slide rule to provide basic fact practice, the products 
through 81 could be marked on the D scale. 

The process of connecting the scales end-to-end to allow multiplication 
of any two numbers could go on forever, but it is not too practical, nor is it 
necessary. By sliding the C scale to the left rather than to the right, that is 
using the 10 on the right of the C scale as the index, all the products through 
100 may be found: 

Example: 7 x 5 = 35 
5 

2 3 1 5 6 7 8 9 1 

~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~~>>luii ~iinluu~uuluu~uuluu~uu6m~ui~hm~mdu,~ 
v i i i i ~ i i l i i i i ~~ rn1Ti ir~nn~nnlnnlnnlnnlnnmgm~Imm~miirnR 

3 4 5 6 1 8 9 ] 

35 ~ 

Multiplication involving a 2-digit number may be done in the same manner 
as above. For example, to multiply 8 x 15: 

c 
1 

i i r i I 
uuliu~ 

5 6 7 8 9 1 

uuliui uuliui iu~hm uuhmuuhm~md~ut 
i i > > l i i i i l r r i i l i i n l n n~nn~nnlnnlnn~nnlnnlnnlmili~i~l11111~1 

3 t 5 6 7 8 9 1 

1.~0 

Finally, 2 2-digit numbers such as 22 x 45 may be shown. Note that the 99 
is considered as 99 tens or 990. 

~5 

~ ~ ~ ~ I 
1 
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5 6 7 8 9 1 

Division with this slide rule is just the inverse of multiplication. For 
example, to show 35 5, put the 5 under the 35 and look above the right index 
to find the quotient, 7. 

c 
1 2 3 ♦ 5 6 7 B 9 1 

~ i i i l i i i i ( ~ i ~ i I i i i i ~ i i i i I iui~uuliui~uuliiu~iudmumluu~iwWu~u~ 
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NOMOGRAPNS 

Add.~ti.o n-.a ub.t~ca.c~i.o n 

Devices called Homographs have been designed to allow a person to do 
rapid computing by just reading numbers from scales drawn on graph paper, or plain 
paper. One type of nomograph is shown below: 

A 

B 

0 .1 2 3 4 5 6 7 8 / '9 10 11 12 

2 4 6 8 10 12 14/ 16 18 20 22 24 

0 1 2 3 4 5 ~~ 7 8 9 10 11 12 

To add any two numbers, locate one on the top line and the other on the 
bottom line. Place a straightedge at these two points; the straightedge will 
cross the middle line at the sum. The diagram above illustrates 9 + 6 = 15. 
For subtraction, use the top and middle lines and read the difference from the 
bottom line. The diagram above also illustrates 15 - 9 = 6. 

To make such a nomograph, start with three equally spaced, horizontal or 
vertical, parallel lines, A, B, and C. Mark off equal spaces on each line. On 
lines A and C, number corresponding marks with the same numerals. Mark each point 
on line B with a numerical value twice that of the corresponding marks on lines 
A and C. These lines are related to one another by the formula, Top + Bottom = 
Middle. Using this formula, you can construct a nomograph for any set of numbers 
you wish - naturals, integers, fractions, decimals. 

A nomograph that can be used for multiplication and division works in 
much the same manner as the addition-subtraction one. The diagram shows a 
nomograph for multiplication and division. Again there are three equally 
spaced, horizontal or vertical, parallel lines, A, B, ano C. Lines A and C 
are marked off exactly like the scale of a multiplication slide rule. Line 
B has half the scale of the other two, thus has two slide rule scales in the 
same length that lines A and C have one. 

To multiply any two numbers, locate one on line A and the other on line 
C. Join with a straightedge, which will cross line Bat the product of the two 
numbers. These lines are related to one another by the formula, Top X Bottom = 
Middle. The following diagram illustrates 5 x 8 = 40. (Remember, from the slide 
rule, that the 4 means 4 groups of 10 or 40.) 

Division on the nomograph is, of course, just the inverse. Locate the 
dividend on the B scale, the divisor on the A scale, connect the points with a 
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straightedge which will cross the C scale at the quotient, the answer. Thus, 
the nomograph below shows 40 5 = 8. 

Note that you can find the square of any number on the A and C scale by 
looking at the corresponding point on the B scale, and you can find the square 
root of a number on the B scale by looking at the corresponding numbers on the A 
and C scales. 

To make a multiplication-division nomograph, use the scale below or the 
scale from one of your slide rules. To use for basic fact practice, mark the 
products through 81 on the 6 scale. 

1 ~ 4 ~ 5 6 7 • 9 10 
~ 1 I ~1 I 1 1 1 ~ 

= J ~ 3 6 7 . 9 1 T J~ 4 S 6 7 . 9 10 
B 1 t I 1 { 1 l 1 1 l i v l 1 I 1 1 ~ 

C T { I I T\ I I 
Z ? 1 7 f ~~ 10 

PUCK~T CHARTS 

Pocket charts 'are useful not only for computing, but also for developing 
place value and grouping by 10 ideas. 

To make one chart with 4 pockets, use a 24" x 18" sheet of construction 
paper and fold as follows: measure down from the top 6 1/4", then fold UP. 
Then measure down from the fold, 1 1/4" and fold DOWN. Measure 3 1/4" down 
from the second fold, and fold UP. Continue measuring 1 1/4" and fold down, 
then 3 1/4" and fold up, until you have four "pockets". Staple or glue the 
folded construction paper to a heavy cardboard backing, 13" by 18", and trim 
the edges with black tape. 

Three charts allow one each for ones, tens, hundreds; or for tenths, 
hundredths, thousandths if working with decimals; or for three places if working 
with other bases. Cards containing these titles could be made, and clipped onto 
the top of the chart with a paper clip. 

Cut a supply of 1 1/2" x 3" cards for use as markers in the charts. 

Small. individual charts for each pupil are more easily made by folding 
a sheet of paper into thirds and labeling appropriately. Pupils can use tooth-
picks, popsicle sticks, or cardboard strips for markers. 

The following figure illustrates an addition example and shows how the 
pocket charts help pupils see the meaning of regrouping. The example, 48 + 25, 
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is shown with 4 bundles of 10 in the lOs place, and 8 ones in the ones place. 
25 is shown with 2 bundles of 10 in the lOs place, and 5 in the ones place. 
The pupil puts all the ones together, then takes 10 of them and makes a bundle 
of 10 which he puts in the lOs place. Thus he sees 73 as the sum. 

Borrowing or regrouping for subtraction can be similarly shown, as can 
multiplication and division. 

TENS 

nnnn 
nn

ONES 

nnnnnnnn 
nnnnni 

ABACUS 

TENS 

nnnnnnn_ 
ONES 

nnn

Some form of the abacus has been used as a computing device since earliest 
times, and is still in use in some countries today. Although there are many types 
of abaci available, perhaps the easiest for children to make and use is the spike 
or open-end abacus. 

A 1" by 3" by 5" board or piece of Styrofoam may be used for a base. 
Pieces of coat hanger wire can be pushed into the Styrofoam, or put into holes 
drilled in the board. The wires should be uniformly spaced; 3 wires are suf-
ficient for primary grades, and 5 or 6 for intermediate grades. Wooden or plastic 
beads are used to put on the wires. 

To do an addition example such as 37 + 85, 7 beads are put on the ones 
wire and 3 on the lOs wire. 

Then 5 beads are put on the ones wire, and 8 on.the lOs wire. 

42 

o 
0 o g

So 
8~ 



Ten beads are then removed from the ones wire, and exchanged for one 
bead which is put on the lOs wire. Similarly, 10 beads are removed from the lOs 
wire and exchanged for one bead which is put on the 100s wire and exchanged for 
one bead which is put on the 100s wire. Pupils can see the result - 122. 

Subtraction may be shown by reversing the steps for addition. 

The wires can also represent decimal places, and illustrate computation 
with decimals in the same manner as above. If upper elementary students are 
working with bases other than base 10, the abacus can again be used to show 
place value, regrouping, and computation. 

Some pupils may be interested in looking into the history of the abacus, 
and becoming familiar with the types of abaci still in use today in countries 
like Japan. 
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What can yov do with thumbtacks? 
Many common objects which teachers usually have in abundance in their 

desk drawers can become very useful manipulative aids. What can you do with 
thumbtacks in a mathematics class? Here are some ideas. 

GIEI GH7 

In the early grades, initial experiences with any kind of measurement 
should be in terms of nonstandard units. Thumbtacks can serve as a unit of 
weight. The following type of activity card might be used in Grades II to IV. 
Children should work in groups of 2 or 3 children each. A balance is required 
for this activity. If your school does not have a pan balance you can easily 
construct one with string, foil cupcake cups, masking tape, and a piece of wood 
15" to 18" long. The following diagram illustrates the assembly of the balance. 

string 

%// %/ wood 

masking tape 

  string  

cupcake cups 

TACK WEIGHT 

Objective: To provide initial experiences with measurement of weight. 

Materials: Box of thumbtacks, balance, penny, chalk, pencil, other light 
objects. 

Directions: 

1. How many thumbtacks does it take to balance the penny? 
2. One penny weighs about   thumbtacks. 
3. Guess how many thumbtacks each of the following weigh: 

(a) a piece of chalk. 
(b) your pencil. 

4. Weigh. the chalk and your pencil and compare the weight with your guess. 
5. Find some other small objects and weigh them with thumbtacks. 
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You may want your students to record their findings in a table. Pupils 
should discuss the weight of their pencils. Why were there differences here? 

If you want to develop the use of standard units, you could ask the 
students to find the weight of one thumbtack. Metric weights (grams) work best. 
Unless you have milligram weights, this becomes a problem-solving activity be-
cause children will have to find out how many tacks are required to balance the 
one gram weight and then divide to find the weight of one tack. 

PROBABILITY

Thumbtacks can also serve as a useful aid in working with probability at 
the upper elementary or early junior high school level. A laboratory activity 
like the following could be used. 

THUMBTACK PROBABILITY 

Objective: To determine the probability of the different ways a thumb-
tack may land. 

Materials: 10 identical thumbtacks, .paper or Styrofoam cup. 

Directions: 
1. Toss one thumbtack several times. What are the possible ways the 

tack can land? 
2. Estimate how many times a thumbtack will land in each position if 

tossed 100 times. Record your estimate in the table below. 
3. Put the 10 tacks into the cup. Shake and dump the tacks onto the 

table. Count how many landed in each position. Record your re-
sults. Repeat 9 more times. 

Outcome 
(How landed) 

Estimate 1 2 3 4 
Experiment number 

5 6 7 8 9 10 Total 

4. How close was your estimate to your experimental result? 
5. Find a thumbtack with a smaller head. Will this make a difference? 

Experiment to find out. 
6. Obtain a thumbtack with a longer stem. Experiment to see if this 

makes a difference. 
7. What other things might change the probabiltiy? 
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PROBLEM SOLVING 

We are constantly looking for ways to place children into meaningful 
problem-solving situations. The following problems could arise from an art 
lesson when the children want to hang their product. The problem is based on 
the assumption that all the art is done on identical rectangular paper. This 
problem could be attempted by students from Grade I through Grades VI or VII. 

PICTURE HANGING 

Objective: To provide an interesting problem-solving opportunity. 

Materials: Thumbtacks, rectangular paper, equilateral triangular paper. 

Directions: 
1. To hang one picture, we need 4 tacks,   to hang 2 pictures, we 

could use 8 tacks,• ~. .1 although 7, • would do and even 
6,~ 

2. Every picture must be fastened by 4 tacks, one through each corner; 
no drawing may be covered by another except along the edge. 

3. Complete the following table: 

Number of 
pictures 

Number of ways 
to hang 

Smallest number 
of tacks needed 

Largest number 
of tacks needed 

1 

2 

3 

4 

5 

6 

4. Suppose your pictures were shapped like an equilateral triangle, 

/ \ 
Make a table like the one in number 3 for triangular pictures 

1 This problem is adapted from Ernest R. Ranucci, "Thumb-Tack tics", The arithmetic teacher, 
1969, 16, pp.6G5+. 
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FIGURATB NUMBERS 

When your class is studying some topics from number theory., you could 
have one group of 2 or 3 children outline with tacks the triangular number on the 
bulletin board. (See Figure 1) Another group could illustrate the square numbers 
(Figure 2). If you have students who show a keen interest in figurate numbers, 
you could challenge them to find the series of pentagonal and hexagonal numbers 
and represent these on the bulletin board with thumbtacks. 

~, 
I 3 

I 

48 

~~~ 

4 

6 10 

Figure I TRIANGULAR NUMBERS 
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16 25 

Figure 2 SQUARE NUMBERS 
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Manipulative aids ~Or devebping concepts of 
three-dimensional space 

In space or 3 dimensions, geometric shapes or figures are determined by 
surfaces which may be curved (for example, a sphere) or plane (flat, for 
example, a cube) in which case they are called faces. If the figure is 
determined by faces, these meet in edges, which are line segments. These 
edges may be used to determine the figure, which is then bounded by the 
plane, or flat faces through the edges. In the case of both 2-and 3-
dimensional figure s, the intersections of the edges fix the vertices of the 
figure. If the 3-dimensional figures are closed, then they enclose a 
region or volume of space [Elliott, MacLean, and Jorden, 1968, p.63]. 

Aids such as straws emphasize the edges and vertices of a 3-D figure. 
Paper models emphasize the faces of a polyhedron. Unit cubes are useful for em-
phasizing the filling of space. Many experiences are needed by children to help 
them develop the concept of volume. 

STRALUS AND PIPE CLEANERS 

Ex~en,%ence 1 

Each child is given a box of straws, pieces of covered wire or pipe clean-
ers and scissors. 

1. Use 3 straws of equal length. What can you make using pipe cleaners to hold 
the straws together? Is it rigid or flexible? It is rigid. All triangles 
are rigid figures. 

2. Use 3 more straws of equal length. Try to make a tent-like structure on your 
first figure. Is it rigid or flexible? This figure is called a tetrahedron 
and is rigid because it is made of triangles. 

3. Use 12 straws of equal length. Make the skeleton of a cube. Is it rigid? 
To make a quadrilateral rigid insert a diagonal. How many diagonals must you 
insert in your skeleton of a cube to make it rigid? Try it and compare your 
results with your neighbor's. If you added a diagonal to each of the 6 sides, 
you have stiffened your cube. It is now divided into tetrahedra. How many? 

4. Use 8 straws of equal length. Use four of them to make a base. Is this base 
rigid? Cut another straw and insert it to make the square base rigid. Plow 
use the other 4 straws to make a pyramid. Why is the figure rigid? 
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PAPER AND TAGBOARD 

Expetr~.ence 2 

Give each child an envelope, scotch tape, and colored tagboard. 

1. Johnson and Kipps (1970) suggest the following procedure for making a tetra-
hedron from an envelope. Seal the envelope. Draw an equilateral triangle, 
XYZ, on the end of the envelope using the end edge as one side. Draw a line 
through Y and perpendicular to the edge of the envelope. Cut along the dotted 
line. Fold along XY and ZY and bend back and forth several times. Pull out 
the open end of the envelope. XYZ will be one side of the tetrahedron. Use 
scotch tape to fasten the open edges together. Is the tetrahedron rigid? 
Why? X 

~Y 

Z 

2. Cut out 16 equilateral triangles of the same size from colored tagboard. Make 
a tetrahedron. How many triangular shapes did you use? Draw a net or pattern 
for a tetrahedron. How many different patterns can you find? 

3. Now use 8 of the triangular shapes. Fit them together and fasten them with 
scotch tape to make an octohedron. Make a net or pattern for an octohedron. 

4. Cut out a square-shaped base which has a side equal to the side of the equi-
lateral triangles. Make a pyramid using this square base and some triangular 
shapes. Draw a net or pattern for a square based pyramid. 

5. Cut out 5 squares of equal size. Put them together to form an open cube. Try 
to draw 8 different nets or patterns for an open cube. 

CARDBOARD CONTAINERS 
Expetu:.ev~ce 3 

Interesting cardboard containers can be found in supermarkets. J-cloths 
and straws sometimes are sold in hexagonal prisms. Certain types of rolled 
oats are sold in cardboard cylinders. 

A most successful experiment for learning the relationship between the 
dimensions and volume of rectangular prisms was suggested by Marshal Bye at a 
Calgary conference. A child who has completed this experiment is not likely to 
forget i t. 

Children may work in groups. Each group is given a Rice Krispie carton. 
Each child is to make a box which has dimensions half as large as the dimensions 
of the carton. Each child guesses how many of the small boxes will be needed to 
fill the Rice Krispie carton. Each child records his guess before making his 
box. After the boxes are made, the children place as many of the small boxes as 
possible in the carton. How does the volume of each small box compare with the 
volume of the original Rice Krispie carton? This activity should be given after 
pupils have studied division of fractions. 
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Fx~euu:ence 4 

Walter (1970) cut milk cartons to make open cubes. Make the height 
equal to the length and width of the base and cut off the top of the carton. 

Numbered diagrams of the 8 possible patterns for an open cube are shown 
to the children. Each child decides which pattern he wishes to make and record 
its number. He must think how he should cut the carton to produce the pattern 
or net which he chose. The diagrams may be removed before the children cut the 
cartons. Have extra cartons available for children who are unsuccessful on the 
first attempt. 

Ex~erri.ence 5 

Mark off colored tagboard in square inches. Nave each child make several 
open boxes so that you have a supply of boxes having the following dimensions 
in inches: 

Box Length Width Heiqht 

A 2 2 9 

B 4 1 9 

C 4 3 3 

D 6 6 1 

E 6 1 6 

F 9 2 2 

G 18 2 1 

Fasten the edges with scotch tape. Have the squared side of the tagboard 
on the inside of each box. These boxes will be used in an activity described under 
unit cubes. 

UNIT CUBFS 

Cubes can be placed together to fill space completely. For this reason 
they are a valuable aid in the development of the concept of volume as the amount 
of space a solid occupies and as the amount of space in a hollow container. 

Conservation of volume does not occur usually until a child reaches the 
age of 11 or 12 years. Informal experiences which a child has with unit cubes 
before that time will help him to reach conservation. 

Fxpe~c.%ence G 

For this experience, each child needs about 33 unit cubes, 24 pieces of 
circular wood Bowling, and 24 square-based wood prisms. 

1. Try to build a wall of two thicknesses with each of the materials provided. 
(Nuffield, 1967). Record your results. 
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2. Patterns with cubes - How many patterns can you make with 3 cubes? Turn them 
around and see if they are really all the same. Call this Pattern 1: —> [Z_ 
How many different patterns can you make with 4 cubes? Try to find 6, 2 of [~ 
which are mirror images of each other. If you have time, draw a picture of 
each of your patterns. These patterns may be found by beginning with Pattern 1 
and adding one more cube in 6 different ways. The pattern   where 
the fourth block forms a square is not used. 

In the next activity, these 7 patterns which you have found will be used 
again. Check yours with the illustration below: 

— ~ 

1 

~xpetc,%evcce ? 

~~ f

3 4 5 

v .~ ~.

6 7 

The 7 pieces described in the second part of experience 6 form the SOMA 
puzzle. There are over 200 different ways to arrange the 7 pieces in a 3 x 3 x 3 
cube. In order to determine whether a solution is the same as or different from 
others, always turn your 3 x 3 x 3 cube so that the L shape or Pattern 2 is on 
the top layer. Now place the L in one of the 4 positions shown below: 

2 2 2 2 3 

2 2 2 2 

2 2 2 2 2 2 2 

A B C D 

There are many different Type A solutions. To prove that you have found 
different solutions, make 3 grids for each solution and indicate in each square 
the number of the block found there. 

Top Layer Middle Layer Bottom Layer 

See how many different solutions you can find for Types A, B, C, D. Record 
each one and compare them with your neighbor`s solutions. 
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~xpe~:.ence k 

Filling boxes with cubes. 

Each child should have 40 blocks. The 7 boxes having the following 
dimensions were made in an earlier activity (Experience 5): 

Box Dimensions 

A - 2x2x9 

B - 4x1 x9 

C - 4x3x3 

D - 6 x 6 x 1 

E - 6x 1 x6 

F - 9x2x2 

G - 18 x 2 x 1 

Give each child the following table: 

Box Estimate of Number of 
Cubes Needed to Fill 

Box 

Actual Number of Cubes 
Needed to Fill Box 

A 
B 
C 
D 
E 
F 
G 

Have each child fill in all the estimates first, then use blocks to 
check. No mention need be made of dimensions. This experience highlights the 
fact that boxes of varied shapes may hold the same number of unit cubes. 

TIN CANS 

A variety of tin containers can be assembled by the children. These may 
include pop cans, small, medium and large fruit juice tins, salmon tins, squat 
size bean tins, large and small coffee tins, lard tins. Label each tin A, B, C, 
and so on. The following activity will assist children to understand another 
concept of conservation of volume, that is, the conservation of displaced volume 
(Copeland, 1970). 

Expe~u.ence 9 

The following activity is adopted from Sawyer and Srawley (1957). Ma-
terials needed: 9 labeled cylinders, a large basin of water, balance and weights. 
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1. Fill each cylinder with water to the water line (see diagram below). Weigh 
each full cylinder and record the weight in grams in the table. 

2. Empty each can and put enough weights in it until it nearly sinks in the basin 
of water. Mark the level of the water on each can. Record for each cylinder 
the weight in grams which was needed to just keep the tin afloat. 

3. Measure and record the diameter of each cylinder. 

4. Measure and record the height of each cylinder up to the water line. 

5. Find the connection between the volume of each tin and the weight that almost 
sinks it. Do you need to consider the weight of the cylinder? Yes? 

Tin Container 

Metal Weight 

Cylinder 
Wt, in Grams 
of Empty 
Cylinder 

Wt. in Grams of 
Cylinder Filled 
with Water to 
Water Line 

Total Wt. in 
Grams Needed 

to Nearly Sink 
Cylinder 

Diameter 
of 

Cylinder 

Height 
of 

Cylinder 

Vol. in 
c.c. of 
Cylinder 

A 

B 

C 

D 

E 

F 

G 

H 

I 
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srvRv~v~u~ 

Hobby shops sell Styrofoam in a variety of 3-D forms such as spheres 
of various sizes, cones, truncated cones ( top cut off) and rectangular prisms. 

Ex~elu.en.ee 10 

Materials needed: 5 Styrofoam cubes and a sharp knife. One size of cube which 
works well is a 3" x 3" x 3" but other sizes are possible. 

1. Leave cube 1 intact. 
2. On Cube 2, measure from each vertex, 3/8" along each side. Cut off the 8 

corners as marked. This will be the first truncated cube; TC1. 
3. On Cube 3, measure 3/4" from each vertex along each side. Cut off the 8 

corners as marked. This will be truncated cube, TC2. 
a. On Cube 4, measure 1 1/8" from each vertex along each side. Cut off the 8 

corners as marked. This will be truncated cube TC3. 
5. On Cube 4, measure 1 1/2" from each vertex along each side. Cut off the 8 

corners as marked. This will be a cuboctahedron. 

By observing the cube, the three truncated cubes, and the cuboctahedron, 
complete the following table: 

.Polyhedron Shape of Faces Number of 
Vertices 

Number of 
Edges Square Hexagonal Triangle 

Cube 

Truncated Cube 1 

Truncated Cube 2 

Truncated Cube 3 

Octahedron 

The diagrams on p.56 indicate that it is possible to begin with an 
octahedron and by paring off the eight vertices, to progress through truncated 
octahedra back to a cuboctahedron. (Guy, 1968.) 

S CIMMARv 

The 10 activities described have emphasized the idea of the 3-dimensional 
object or shape occupying a space; the amount of space inside a container; con-
servation of volume and comparison of volume and capacity. These experiences 
are performed at the intuitive level as background for later work. 
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Cube 

Cuboctahedron 

Truncated Octahedron 

56 

Truncated Cube 

Octahedron 
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Anne Bernadette's file 

Anne Bernadette's Tile came into being when a young teacher from the 
area of business education was presented with a Grade VII mathematics class which 
did not seem to appreciate textbook teaching. Each pupil was asked to acquire 
a the which he ruled and cut, a~useful mathematical exercise in itself. The 
students enjoyed manipulating their sets of shapes as they learned about classi-
fication of shapes, area, perimeter, the identification and measurement of angles 
and algebraic equations. As a bonus, the set quite fortuitiously contained a 
5-piece tangram. 

The Tile has since been used by teachers from Grade I right through ele-
mentary school, to give children experience in matching and sorting, ordering, 
value relations, fractions, dissections as well as the topics previously men-
tioned. There seems to be no end to the variety of activities arising from the 
use of this simple set of shapes. 

MATERIALS 

A 12" x 12" floor tile, cut to the pattern below. 

For the purpose of identifying the various pieces for the reader, the 
shapes have been labeled A to L. 

3.. 

Equi lateral► 
Triangle 

B 

E 

B 

D 

G 

D 
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1. 

2. 

3. 

The 

The 

The 
the 

SOME CHARACTERISTICS OF ANNE BERNADETTE'S TILE 

oblong (A), largest triangle (F) and the trapezoid (C) are equal in area. 

square (B), triangle (E) and parallelogram (G) are equal in area. 

triangle (E) together with two of the smallest triangles (D) will make up 
oblong (A), the largest triangle (F) and the trapezoid (C). 

4. The square (B) together with two of the smallest triangles (D) will make up 
the oblong (A), the largest triangle (F) and the trapezoid (C). 

5. The parallelogram (G) together with two of the smallest triangles will make 
up the oblong (A), the largest triangle (F) and the trapezoid (C). 

6. Two of the smallest triangles (D) will combine to form the square (B), the 
triangle (E) and the parallelogram (G). 

7. The triangles (D,E,F) are similar. 

8. The three shapes (J,K,L) can be rearranged to show the difference between 
area and perimeter. 

9. The angles of the shape (L) are 120°, 45° and 15° or 1/3 turn, 1/8 turn and 
1/24 turn. 

10. The angles of the shape (J) are 45°, 90°, 105° and 120° or 1/8 turn, 1/4 
turn, 7/24 turn and 1/3 turn. 

11. The following pieces form the 5-piece tangram: square (A), triangle (E), 
parallelogram (G), 2 of the smallest triangles (D). 

SOME ACTIVITIES 

1. Take a big piece. Cover it with smaller pieces. Can you do it a different 
way? Is there still another way you can do it? 

2. Start with any piece. Next to any side, place another piece so that the 2 
edges are matched in length. Try to make your trail as long as possible. 
Example: 

A 

B 

not 

3. Share the pieces with a friend, and play the last game with him taking it in 
turns 

4. Sort (classify) the shapes according to number of sides, number of equal 
sides, number of square corners (right angles). 

5. Choose a value for the small triangle (D). Work out what all the other shapes 
are worth (leave out J, K, L). Now choose another value for (D) and repeat. 

6. Write equations using the numbers you worked out for the last activity. 

7. After you know something about fractions, let the oblong (A) be worth one. 
Can you work out what some of the other shapes are worth? Do the same exer-
cise when the trapezoid (C) is worth one. 
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8. Let the pentagon (H) be worth one; what are the other shapes worth? Can you 
write equations using these fractions as numbers? 

9. Find 2 shapes equal in area but different in perimeter. 

10. Make 2 shapes equal in perimeter but different in area. 

11. Find pairs of shapes equal in both area and perimeter. In what respect 
are they different? 

12. Order the shapes according to area from smallest to largest. 

13. Order the shapes according to perimeter from shortest to longest. 

14. Take the parallelogram (G). Give an accurate statement about its perimeter. 
[2 long (sides) + 2 short (sides)] 

[2 longs + 2 shorts] 
[2 L + 2 S] 

Using these terms, give accurate statements about the perimeter of the other 
pieces. (L and J are regarded as too difficult.) 

15. Take the 5-piece tangram. Form these pieces into a square, a triangle, a 
parallelogram, a rhombus, a trapezoid, a pentagon, a hexagon. 

16. Using any 3 of the tangram pieces at a tin, try to make the shapes listed 
in the previous activity. How many of the shapes can you make with any 
4 of the pieces? Any 2? 

17. Take the triangle (E) and the parallelogram (G). Make them into a 4-sided 
figure. How far around is this shape? Make the same 2 pieces into a 5-sided 
figure. How does the perimeter of this shape compare with that of the 4-sided 
figure? Now make a 6-sided figure with the same perimeter. 

18. Make a dot on a piece of paper. Arrange some pieces so that their corners 
fill in a complete turn at that point. Try other combinations of pieces. 

19. Find 4 corners of equal size, which together will make a complete turn around 
a dot. How much of a full turn does each corner measure? 

20. Find 8 corners of equal size which together will make a complete turn around 
a dot. How much of a full turn does each corner measure? 

21. Can you work out the fractions of a full turn (or revolution) that each corner 
on all the shapes measure? 

22. Write an equation to show how much all the corners on any shape add up to. 
Can you see a pattern in your answers? 

23. Use the following pieces to form a square: C, D, E, F, H, J, K, L. 

24. If you tried to make the shapes left over from the previous activity into a 
square, would you succeed? What shape must you add? 

25. What is the biggest triangle you can make? Use as many pieces as you like. 

COMMENTS 

1. The activities range from easy to difficult, so that Grade I pupils could 
do some, while junior high school students would be challenged by others. 
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2. The the described is listed as 12" x 12". Now that Canada is going metric, 
a better dimension for the square may be 40 cm. Thus the equilateral tri-
angle (K) and the square (B) would have 10 cm. sides. 

3. A 7-piece tangram can be formed by adding to the 5-piece tangram, 2 of the 
largest triangle (F). 

~~ 
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The use of attribute blocks: K - XII 
Tf1F MATERIALS 

Attribute blocks or logic blocks can be obtained commercially) or con-
structed from wood2 by the teacher or school shop personnel. A set based on 
four attributes - shape (triangular, circular, square, and oblong), color (red, 
yellow, and blue), size (large and small), and thickness (thick and thin) -
would consist of 48 blocks, one for each possible combination of the variables 
(Figure 1). Obviously, sets with more or fewer pieces could be easily formed. 
For instance, by eliminating thickness as an attribute, the set described above 
would be reduced to 24 blocks. Or, if another shape for instance, pentagon, 
were added, the set would consist of 60 blocks. For certain activities, a 
set for young children might contain only 6 blocks (based on 3 shapes and 
2 colors). 

GAMS AND ACTIVITIES 

The attribute blocks can be used to provide a physical setting for a 
variety of experiences3 which develop or illustrate principles of logical reason-
ing. Many of the suggested games can be played at various levels of sophistiction, 
and are therefore appropriate for learners ranging in ages from 5 to 16 (and up). 
Young children can discover and use intuitively certain valid modes of reasoning, 
while older students may be able to analyze strategies, consider all possibilities, 
and develop proofs using words and symbols. 

The blocks can also serve as the universal set fora number of problems 
in basic counting and probability. 

Sant,%v~y 
Purpose: To acquaint students with the structure of the materials; to 

develop classification skills. 

Instructions: The blocks are placed randomly on a table (or on the floor), 
and the students are asked to sort them, that is, to place together those which 
they think are alike in some way. The result, depending on the level of the stu-
dents, might be several disjoint sets (such as red, blue, and yellow pieces) or a 
two or three dimensional matrix (as in Figure 1). Although young children 
generally require and enjoy a fair amount of free play with the materials before 
settling down to a directed task, they will often begin carting naturally when 
confronted with the blocks. 

1Most suppliers of materials and aids for school mathematics and science handle attribute 
blocks. In Edmonton, Moyer-Vito Ltd. sells various sets of blocks along with guidebooks. 

zFor mimeographed instructions describing how to make your own attribute blocks out of 
wood, write to: Dr. Dossey, Mathematics Department, 313 Stevenson Hall, Illinois State Univer-
sity, Normal, Illinois 61761. 

3Many of the activities dealing with logic are discussed in Z.P. Dienes and E.W. Golding, 
Learning logic, Zo9ical games (New York: Herder and Herder, 1966). 
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8 cm. 

R 

4 cm. 

R 

B 

B 

Y 

Y 

R 

R 

B 

B 

Y 

Y 

Figure 1. The Attribute Blocks: A set based on 4 shapes, 3 colors and 2 sizes. 
Two thicknesses of each of the above depicted blocks would result in 
a set of 48 pieces. 
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D~.~~enence games 

Purpose: To further familiarize the learner with the relationships among 
the pieces; to focus on detecting similarities and differences; to develop strat-
egies involving consideration of all possibilities. 

Instructions: The one-difference game. 

The first player chooses any block. The second player must select a 
block which differs from the first in exactly one way (shape, color, size or 
thickness). The next player then finds a block differing from the second in one 
way, and so on. For example: lst player - small thick reci triangle, 2nd player -
small thick red circle, 3rd player - small thin red circle, and so on. Points 
are obtained by corectly choosing a block or by challenging a block incorrectly 
played by someone else. 

The two-difference game. 

Played as above except that a piece played must differ from the previous 
one in exctly 2 ways. 

The three-difference game. 

Pieces played must differ in exactly 3 ways. Students often discover that 
this can be viewed as a "one-same" game and that using this (logical) strategy 
simplifies the task. 

Two dimensional difference game. 

A grid is needed. One version of the game would require pieces to 
differ by one attribute in one direction and by two attributes in the other 
direction. In Figure 2, the square marked, ?, could be correctly filled in 
several ways (such as thin red large circle; thick red small circle). Players 
might wish to formulate a hypothesis concerning the relationships of correctly 
played diagonal pieces in this game. A scoring system might be instigated to 
encourage the filling of squares bordered by 2, 3 or 4 pieces. Suppose that, 
in attempting to fill such a square, a player decides that he is unable to find 
a block satisfying all required conditions. This may be either because all 
suitable pieces had been previously played or because the conditions make the 
existence of such a block logically impossible (see Figure 3). Determining 
(proving) that a space cannot be filled would be scored higher than simply cor-
rectly playing a block. Strategies of exhausting or considering all possible 
cases would be developed in such investigations. 

Figure 2. The difference game in two dimensions. (The three blocks are all thin.) 
F >or~e difference 

A 

two differences 

O 
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~ one difference 

n 
0 

two differences 

Figure 3. Filling the ? square is logically impossible. (All blocks depicted 
are thin.) 

Gue~s~~.ng game 

Purpose: To develop skills in asking relevant questions and in utilizing 
efficiently information obtained from the answers; to acquaint students with the 
use and power of the logical terms "not", "and", "or"; to illustrate a valid 
mode of logical reasoning. 

rnstructions: The teacher or game leader selects (in his mind) one of 
the 48 blocks. The players attempt to identify this block by asking questions 
which can be answered by "yes" or "no". For instance, if the answer to the 
question "Is it thin?" is "No", the players learn that they need not ask the 
question "Is it thick?" since this can be determined through logic. The situ-
ation can be analyzed as follows: 

If thin or thick p v q 
and not thin or symbolically ti ~ 
then thick q 

An examination of the truth table of the related compound statement 

~(P~q)~tiP~ -~q 

shows that the statement is a tautology and hence that this mode of reasoning 
is valid. Thus for the above argument, if the premises are true, the conclusion 
must always be true. To assist in the thinking process, a chart similar to the 
following might be kept by students as they play this game. 

Answer Deduction 

not thick   thin 
not red ~    yellow not blue 
square    square 

The meaning, advantages, and limitations of "and" and "or" questions 
may be brought out during the course of this activity. It should be discovered 
that questions such as "Is it the small, thin, red square?" or even "Is it 
large and blue?" are not generally productive or helpful. On the other hand, 
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"or" questions provide the basis for more interesting discussions. One problem 
which can generate considerable interest is stated as follows: "Which is the 
better question to ask (would yield the most information)?" (1) Is it red?; or 
(2) Is it blue or yellow?" It is usually only after some debate that participants 
generally (not always unanimously) agree that the two questions are logically 
equivalent. Logically, if a block is either red or blue or yellow, then it is 
red or blue if and only if it is not yellow. Symbolically, if r, b, and y are 
mutually exclusive, 

(r v b v y) ~ [(r v b) ~ tiy)]. 

Now, what is the maximum number of questions required to identify the 
unknown block in the guessing game? The answer is 6 questions - one for size, 
one for thickness, 2 for color, and 2 for shape. Shape can be determined in two 
questions if the first one is an "or" question. For instance: 
Question 1 Is it circular or triangular? 
Question 2 (Answer yes) Is it circular? 

(Answer no) Is it square? 

In a far more difficult version of the guessing game, the objective is 
to determine a subset of the blocks defined as the conjunction of 2 attributes. 
Suppose, for example, that the game leader is thinking of the "thin circles". 
As the players point to various blocks one at a time, the leader must indicate 
whether each is or is not in the set he had in mind. A partitioning of the blocks 
in 2 classes is thus commenced. What strategy should be used to most efficiently 
identify the set? First, one block belonging to the set must be determined; 
suppose it is the large red thin circle. These attributes must then be varied 
one at a time while the other 3 are held constant. For example, the large red 
thin square might next be selected. Since this piece is not in the set, the 
conclusion would be that shape (circular) is a defining characteristic. On the 
other hand, since the small red•thin circle is an exemplar of the set, size 
would not be a defining characteristic. Similarly, the relevance of color and 
of thickness could be tested. 

HUU~ LLC.tC.V~.LP~S 

Purpose: To create Venn diagram-type illustrations of logical connectives 
and relations; to show the relation between sets and logic. 

instructions: Hoops (or rope or string) are required. Sample activities 
are as follows: 
1. Place one hoop on the floor (or table). Put all the red blocks inside the 

hoop. The blacks outside the hoop then would be the "not-red" blocks. If 
the "not-red" blocks were placed inside a hoop, the blocks outside the hoop 
would be the "not -(not-red)" blocks which are the red blocks, illustrating 
that ti(tir) E--> r. 

2. To illustrate disjunction and conjunction, 2 (or more) hoops are required. 
The task might be to place the blue blocks in one hoop and the square blocks 
in another. To accomplish this, one must overlap the 2 hoops. The set of 
blocks is thus partitioned into 4 classes, each identified by the conjunction 
of 2 attributes as indicated in Figure 4. Such activities help to clarify the 
logical meanings of "and" and "(inclusive) or". One of DeMorgan's laws may 
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be illustrated as follows: Since the blocks inside either of the 2 hoops 
are "blue or square", those outside are "not (blue or square)". Hence not 
(blue or square) if and only if not blue and not square; or 

ti(P ~ q) ~--~ (tip ~tiq), 

not blue 
and 
not square 

Figure 4. The conjunction of two attributes. 

The num b etc v ~ ee.em end ~.n ~h e tintetvs ec.,t~i.v n and uvii,v n v b ~:.uv ~ e~ 

Purpose: To allow students to discover methods for determining the number 
of elements in the intersection and union of 2 (non-disjoint) sets. 

Instructions: Answers to the following questions can be obtained by 
counting. Students should be encouraged to discover methods (formulas) for 
finding answers to similar questions without counting. Answers obtained through 
using formulas arrived at inductively can then be checked by counting. 

1. What fraction and how many of the blocks are 
square? Answer 1/4 (12) 
red? Answer 1/3 (16) 
small? Answer 1/2 (24) 
thick? Answer 1/2 (24) 

2. How many blocks are red and square? 
Answer: By counting - 4. 
Methods: 
(a) 1/3 of 48, or 16, are red. 

1/4 of these, or 4, are square. 
(b) 1/3 are red and 1/4 are square. 

1/3 x 1/4 = 1/12 are red and square. 
1/12x48=4 

3. How many blocks are either square or thick? 
Answer: By counting - 30. 
Method: 
# (square or thick) _ # (square) + # (thick) - # (square and thick) 

= 12 + 24 6 
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Ptcv bab~,2.%~y 

Purpose: To determine empirically and theoretically the probabilities of 
simple events, independent events, and composite events (A or B, when A and B 
are not mutually exclusive). 

questions: If a block is selected at random, what is the probability 
that it is 1. blue? 2. red and square? 3. square or thick? 

Instructions: To determine the probabilities empirically (to find the 
relative frequencies): For each of the 48 blocks, list the shape, color, size, 
and thickness on a separate slip of paper. Put the 48 slips in a box. Draw a 
slip at random; note the (1) color, (2) color and shape, (3) shape and thickness; 
and replace the slip. Repeat this procedure 100 times (or more). 

The relative frequency is the number of times (1) blue, (2) red and 
square, (3) square or thick was noted divided by the total number of draws. 

To determine the probability theoretically: 
No. of blue blocks 16 1 

1. Prob (blue) = Total no. of blocks= 48 = 3 

Answers to the next 2 questions (and similar questions) can be found, first 
by counting or otherwise determining the number of blocks satisfying the 
given conditions. Formulas can then either be developed inductively or 
verified in the specific cases. 

2. Prob (red and square) = No. of red and square blocks = 4 = 1 
48 48 12 

1 1 _ 1 
= Prob (red) x Prob (square) = 3 x 4 12 

3. Prob (square or thick) = Na of square or thick blocks = 30 = 5 
48 48 8• 

= Prob (square) + Prob (thick) - Prob (square and thick) 
1 1 1 5 

= 4 + 2 - 8 s 8 

Answers obtained to the above questions using empirical and theoretical 
procedures should be compared and any differences discussed. 

69 



Getting the erect'-angle 
on mathematical activity 

THOMAS E, KIEREN 
Associate Professor 
University of Alberta 
Edmonton, Alberta 



Getting the erect'-angle on mathematical activit~r 

There has been a large amount of literature and perhaps an even larger 
amount of activity packages developed for and by teachers and students of mathe-
matics over the last 5 years. The basis for much of this development came from 
the assumption of the value of individualized instruction and of such adages as 
"doing produces understanding", "go from concrete to abstract", and "discovery". 
The teacher, in face of the proliferation of such educational slogans and complex 
masses of material, must search out fundamental personal reasons for using activ-
ities. Upon finding convincing reasons for having students engage in such ac-
tivities, the teacher might well ask, "Can this be done without large expenditures 
of time, money, or both?" It is one purpose of this paper to briefly discuss 
some issues surrounding the "Why activities?" question. The major portion of the 
paper will try to cope with the "how" problem by using the simple mathematical 
creature, the rectangle, and its sub-species, the square. 

PLAYING AROUND G/ITH MATHEMATICS 

There are many potential benefits of activities in mathematics. From a 
developmental point of view, it is considered that students, probably through 
junior high school age (Lovell, 1971) are capable of logical thinking about 
real or potentially real situations, but not very able to deal with completely 
hypothetical situations. Thus physical models or pictorial images provide a 
necessary grist for the logical- mathematical thinking of children perhaps up 
until the age of 14 or 15. 

Perhaps as important as the notion of using concrete or pictorial models 
as starting points for mathematical ideas, is the notion that students can profit-
ably play with such models. For the preschool child, 2 major modes of changing 
his picture of the world exist, playing and imitating. The latter affords the 
child the opportunity to reshape his thought to accommodate some phenomenon 
in the world. Thus a child watching hockey on T.V. finds a model he can imitate 
in handling a hockey stick, an action which may have been completely foreign to 
him previously. Playing allows the child to impose his already made ideas on 
new phenomena. For example, our young "hockey player" finds he can use balls, 
bottle caps or plastic discs as "pucks" and many things for sticks, goals and 
even rinks. Thus playing allows for creating powerful general ideas. In school, 
and perhaps this practice increases with the grade level, we tend to take a one-
sided view of acquisition of ideas. Imitation is taken to be the tool, while 
play becomes a frivolous activity or one which perhaps can take place as a stu-
dent practices with an idea or skill learned through imitation. In mathematics, 
this tends to mean that learning becomes being told the "right" way to do some-
thing and then verifying through practice that this way is useful. It denies 
the more playlike mathematical processes such as looking for quantitative or 
spatial aspects in a situation, looking for relationships, and guessing at patterns. 
In "playing" with physical materials and pictorial images, the student can bring 
his own ideas to bear and extend them to include new notions. 
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If the above arguments are convincing, the teacher is tempted to order a 
lot of materials or open the mathematics laboratory manuals and get on with the 
business of playing with mathematics in any form. But the business of learning 
mathematics is not that simple. Whether the activity is solving a problem, proving 
a theorem or applying mathematics to everyday life, mathematics means successfully 
working with symbols. Thus in our "play" (presenting activities-oriented expe-
riences to students), we must ascertain that it will contribute to later symbolic 
activity. In particular, we must be certain that the student will not have to un-
learn what he learned from his activity work in effectively dealing with mathematics 
symbolically. To insure this, the teacher must see that the mathematical form in 
the activity should be at least analogous to the later symbolic form. Perhaps 
an example will be useful. 

An activity which one can do with congruent square tiles is to try to make 
rectangles 2 units on one side out of sets of tiles. ror example, sets of 
4 and 6 admit such rectangles while 7 does not. 

Quickly the student sees numbers as falling into 2 sets, the evens whose 
t he sets make into "2 x n" rectangles and the odds whose sets make "rec-
tangles with tails". 

14   15 9 

Once this classification is made, the student might "add odds' in the fol-
lowing concrete way and discover that an "odd plus an odd is an even". 

Now of course the mathematical activity would not have to involve physical 
materials. Students who could divide by 2 could make the original classification 
and by the following type of exercise: 

11 +7= 18, 19+13=32, 3+5=8 

induce that "an odd plus an odd is even". 

Since this symbolic activity is so easy, why all ~~he fuss about concrete 
activity? The answer is "form". Adding 11 and 7 physical ly in the manner above 
is powerfully suggestive of the symbolic proof of the theorem: 

odd odd 
(2n + 1) + (2m + 1) = 2n + 2m + ..2.. 

even 
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Adding 11 and 7 or 101 and 93 symbolically makes no contribution to the form of the 
matherriatics. Thus though both activities allow for discovery, the physical ac-
tivity allows for seeing more mathematics than the symbolic activity. 

In answering the questions, "Why use physical and pictorial models?"~ "Why 
use labs?", or "Why use activities?" a teacher might consider the following guide-
lines which summarize the section above. 

1. Activities with models provide an appropriate setting for development of math-
ematical ideas for students in elementary and junior high school. They can 
provide an appropriate bridge to the world of ideas and symbols. 

2. Activities provide one opportunity for effective "play". During such "play", 
students can exercise such processes as seeing the mathematics in a situation, 
observing possible relationships and guessing and testing personal mathematical 
ideas. 

3. To realize the above in a way which most contributes to further mathematics 
learning, the teacher must choose activities which best "form" mathematical 
ideas. 

7U PULyNUMIALS ANA SACK AGAIN 

Once one has a basis for using activities, the question of how to do so 
effectively arises. Can one use activities in a variety of contexts and can one 
do so without lots of fancy materials? What follows is an answer to these 
questions. 

The activities designed below relate to mathematics which has traditionally 
been in the curriculum for Grades IV to X. All of the activities are based on the 
following physical materials: 

1. A large number of squares (1/2 to 3/4 inches on a side) of either oak tag or 
plastic. 

2. A large set of cubes (1 cm. to 3/4 inch on a side). 

3. Coordinated sets of squares and rectangles (such as 7 x 7 squares, 7 x 1 rec-
tangles, unit squares) of wood or tag-board. 

4. Grid paper. 

5. Sets of colored oak-tag rectangles (1" x 2"). 

Several of the activities are just described; others are given in the form 
of activity cards. The methods of use can vary. The whole class can work in-
dividually on the same activity interspersed with teacher-direction or class 
discussion. Or the class may work in small groups, each group working on an in-
dependent activity. Above all, the activities are merely suggestive of things 
you can do to enrich the mathematical experience of your students. 
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Bu~%edi..ng u~ {~actarv~ 

Materials: A set of 25 to 40 squares of plastic or tag for each student 
or group. 

CARD Al 

How many rectangles can you make from 6 squares? Here are some. 

3 by 2 2 by 3 6 b y l 

The label below the rectangle tells how we describe each rectangle. 
Complete the following table: 

Number of Squares 

1 
2 
3 
4 
5 
6 

8 
9 

10 
11 
12 

How many 
Rectangles Rectangles 

6 by 1, 3 by 2, 2 by 3, l b y 6 

(table can be extended to suit your class) 

4 
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CARD A2 

Explorations 

1. For what number can you make the fewest rectangles? 

2. List those numbers for which you can make only 2 rectangles. 

3. Are there any numbers for which you can make squares? 

4. Tell the number of squares used in these rectangles: 
(a) 4by2   (d) 7by3  
(b) 1 by 5   (e) 4 by 5  
(c)12 by 8   (f)30 by 20  

How do you find the number? 

5. There are many other things which you can explore. Collect information 
or make charts on the following: 
(a) Are the number of squares and the number of rectangles you can make 

related? 
(b) For 4 squares, the numbers used in describing the rectangles are 

1, 2, 4. The sum of these is 7. For 5 squares the numbers are 1,5. 
This sum is 6. Make this kind of sum for all the numbers in your 
chart and tell about any patterns you see. 

Note: There are many uses for Card A2. Clearly the exercises mentioned 
in point 5 are more sophisticated and could be used as projects. In 1-4, little 
verbalization is called for. Yet these activities and their results have the 
form usable in the symbolization of factors and usable in the definition of 
primes or perfect squares. An alternative representation for the chart in Al 
is a class display board to which students contribute correct rectangles: 

Number Rectangles 

12 x 1 

12 
2x6 

13 
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This chart could then be used for later discussion. Another display device 
built by children is various "rectangle trees" for numbers: 

2 ~ 
r 

r 

T2 

6 

12 

r 

 > 3 

sT 

-~j 1 ❑ 

12 = 1 x 12 = l x 4 x 3= l x 2 x 2 x 3 

12 = 1 x 12 = l x 2 x 6= l x 2 x 2 x 3 
3 

12 

An Alternative to Card Al would use cubes. 

—~ z 

3 

Piling Cubes 
If you have 6 cubes you can pile them in several ways so that the 
piles are the same height. Here are some. 

1 pile of 6 ,___ 

Fill in the chart. 

6 piles of 1 

Number 
1 

2 

Ways of Piling 

2 piles of 3 

This problem; although equivalent, seems simpler than the rectangular 
problem and can be worked on successfully by children even as young as 6 or 7. 

lAs a teacher, you could give this assignment over a 3-day period and then collect the re-
sults on a chart on the board. Try to collect as many different ways as possible for each 
number. 
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Ptc,%me bag 

The game, prime bag, stretches the concept of using squares, but it is 
a simple game dealing with primes. The game can be used with a whole class or 
with small groups. 

Each student gets a small bag containing squares, each representing a 
prime number. There are 5- 2s; 4 - 3s; 3 — 5s and 2 of each other prime up 
to and including 23. 

contest: How many numbers from 1 to 100 can you make up using the numbers 
in the bag and the operation of multiplication only? Make a list of all of your 
"successes". 

Example: 30 = ~5  x ~3 x a2 (5 x 3 x 2) 

35 = ~5  x n7 (5x7) 

Questions: 
(a) How many different ways are there to construct each number? (This leads to 

the Fundamental Theorem of Arithmetic.) 
(b) Are there any numbers you can't build? If so, how can you describe these? 
(c) What is the largest number you can build using the squares in the bag and 

multiplication? 

Pa~ynam~.af. ~uzz.~e~s 

Materials: For each group a set like the following: 
3 blue squares - 12 cm. x 12 cm. 
10 blue rectangles - 12 cm. x 1 cm. 
10 red rectangles - 12 cm. x 1 cm. 
30 blue squares - 1 cm. x 1 cm. 
30 red squares - 1 cm. x 1 cm. 

All of the puzzles have the same direction. Given a certain subset of 
the set given above, make a blue rectangle. For example: (in the diagrams, 
unshaded will represent blue; shaded, red.) 

Given Rectangle 

(12 x 12) + (2 x 12) + 1 = (12 + 1) x (12 + 1) 

or 122 + 2 x 12 + 1 = (12 + 1)2

or (if the big square is considered x2, the rectangle x and each unit 1) 

x2 +2x+1 = (x+l) 2
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These puzzles can be done by individuals guided by an instruction sheet, 
or the 2-person game Rectangl-it, may be played. 

Rectang~2--%t 

Materials: Like those described above. 

Rules: 

1. There are 2 positions - Setter and Maker. 
2. On each play, the Setter sets the given subset of the playing set and acts as 

timer 
3. On each play, the Maker attempts to make a rectangle within 3 minutes. 
4. Scoring: If the Maker completes a rectangle in less than: 

1 minute: 3 points 
2 minutes: 2 points 
3 minutes: 1 point 

If not, the Maker either gets no points or calls "no rectangle". If he can 
show that no rectangle can be made, he gets 3 points. If he calls "no 
rectangle" and one can be made he loses 3 points. 

5. In each round, each player is the Setter and the Maker once. 
6. A game is 4 rounds long. 

Mvne ~uzz~.e~ 

Given below are some puzzles, solutions and records. It is important 
that students, whether individually or in a game setting, keep accurate records 
of their attempts. From studying the diagrams and symbolic records, the student 
will be able to see the forms useful in factoring polynomials. 

PUZZLE 1 : 

Given 

J 

❑ ❑ ❑ 
❑ ❑ ❑ 

Record 

122 +5x 12+6= (12+3) ( 12+2) 

or x2 +5 x+6= (x+3) (x+2) 
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PUZZLE 2: 

Given 

❑o❑ 
2x2 + 5x + 3 = (x + 1) (2x + 3) 

Rectangle 

 ~❑❑❑ 

Note: Doing only a few such puzzles gives .insufficient experience. 
Doing a large number allows the students to find relevant ideas such as "the 
factors of the constant are important". It is important for students to note 
that just as factoring numbers involved building rectangles, factoring poly-
nomials involves building rectangles. This enables this "puzzle" activity 
to significantly contribute to polynomial problems. 

PUZZLE 3: 

In this puzzle, the shaded areas stand for red and the unshaded for blue 

Given Rectangle 

❑ ❑ ~ ❑ ❑ ❑ 

Record 

I2-z 

M 
'N 

12 2 - 5 x 12 + 6 = (12 - 3 ) (12 - 2 ) 

x2 -5x+6= (x-3) (x-2) 

Note: This puzzle illustrates the use of negative coefficients and il-
lustrates that these puzzles can and should be challenging puzzles in their 
own right. It should be noted that red covers blue in these puzzles and that 
equal numbers of red and blue rectangles can be added without changing the 
character of the polynomial. 

These puzzles represent an activity which is preliminary to symbolic 
factoring and which allows students to play while preserving the form of later 
symbolic activity. If the teacher wants a more guided activity, she can con-
struct cards such as the following which makes use of 3 sets of materials like 
those described at the beginning of this section on polynomial puzzles except 
based on 5 cm., 7cm., and 12 cm. 
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CARD P1 

1. Choose one card representing 5 x 5; 2 representing 5 x 1; and one 
unit. 
Build a rectangle. 
What are its dimensions? ,  
This can be represented by the following sentence. 

2. Build a rectangle from one 7 x 7; 2, 7 x 1; and one unit. 
Dimensions:    . 
Complete the following sentence. 

72 +2x7+1 = (7+_) (~+ ) 

3. Build a rectangle from one 12 x 12; 2, 12 x 1, and one unit. 

Dimensions: 

Complete the following sentence 

12 2 + 2 x 12 + 1 ( ) ( ) 

4. Suppose you had to build a rectangle from one, 30 x 30; 2, 30 x 1 
and one unit. 

Dimensions: 

302 +2x30+1 

5. Complete the 

One 

= ( ) ( ) 

following chart: 

Two One Dimensions 

5x5 5x1 unit 52 +2x5+1 = ( )( ) 
40x40 40x1 unit 

_~ 
—_ —_, 402 + 2 x 40 + 1 = )( ) 

1000x1000 
nxn 
yxy 

1000x1 
nxl 
yxl 

unit 
unit 
unit 

_~ 
_~ 10002 + 2x1000+ 1 = 

_~ n2 +2n +1 = — —~ y2 +2y +1 = _~ 

)( 
)( 
)( 

) 
) 
) 

Complete the following: 

x 2 +2x+1 = )2 

Note: This card varies the same puzzle over several dimensions or numerical 
variants. It deliberately attaches the physical activity ~i.o the symbolic activity 
in a tightly prescribed form. It would best be used at a time when you really 
wished to concentrate on polynomial factoring and special forms. The previous 
puzzles and games might be profitable earlier. That is, this latter activity 
would best be used in Grades IX or X while the former could also be used in V, 
VI, VII or VIII. In order that this kind of activity be effective, cards for 
other factoring problems such as difference of squares would have to be used. 
Physical activity as a prelude to symbolic activity is not highly successful on 
a one-shot basis. 
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Sc~ucuces , nee~a.ng~.e~s and eam~u~.%ng 

Teachers are probably familiar with rectangular pictures as models for 
binomial multiplication. These models are based on an area interpretation of 
multiplication. Some examples are given below. 

1 

x 

2 

x + 3 

x2 
3x 

2x b 

(x+3) (x+2 

3 

c 

d 

= x2 +5x+6 
a b 

ac be 

ad bd 

(a+b) (c+d) =ac+bc+ad+bd 

2 

(2y+4) (y+2) 

a 

= 

2 

2y2 +8y+s 

4 

a a2 -2a 
(a-2) (a+3) 

=a 2 -2a+3a-6 
=a 2 +a-6 

3 3a -6 

Making up activities such as these in which students create pictures of 
binomial multiplication is a means of better understanding the use of the dis= 
tributive property. As is seen in example 4, this activity is interesting in 
itself. 

This model is even more interesting with polynomials of higher order. 

~x2

+x 

t5 

x2 + 2x + 3 

2x4 4x3 6x2

x3 2x2 3x 

5x2 10x 15 

(x2 +2x+3) (2x2 +x+5) = 2x4 +5x3 +13x2 +13x+15 

One useful pictorial activity is to have students diagram 10 such multiplications. 
They may do this rather blindly but very likely they will reduce this activity 
to a kind of algorithm and instead of using rectangles will simply use a grid 
as on p.82. 
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x2 + 2 x + 1 

3x2

Sx 

t7 

3x' bx3 3x2

'SX3 -lOX2 -SX 

7x2 14x 7 

(x2 + 2x + 1) (3x2 - 5x + 7) 

= 3x4 + x3 + ox2 + 9x +7 

After a few such examples, they will discover that like terms lie on the diagonals 
and hence invent a neat multiplication algorithm. 

The following card might be made up: 

CARD PD1 

Using the grid picture, make up a method for dividing polynomials. 

Note: This is an interesting open-ended activity especially if the poly-
nomials do not divide evenly. 

Another interesting pictorial activity is illustrated by the following 
card. This activity might be most useful in high school mathematics. 

CARD BT1 

1. Complete the following diagrams. 
x 1 

x 

1 

x 

x 

(X + 1 ) 2 = 

0 0 
X2 + 2X + 1 

x 

1 

(X + 1 ) ( x2 + 2x + 1) _ (x + 1 )s 

x2 2x 1 

2. Continue this process through (x-+ 1)io. 

3. Study the rectangles in each of the stages above. How many squares 
does each contain? Diagonals? 

Stage Squares Diagonals 
(x + 1)2 4 3 
(x + 1)3 6 4 
(x + 1)4 

~~ 
(x + 1)io 

4. How many squares and diagonals would (x + 1)Zo, (x + 1)ioo~ (x + 
have? 

What doffs this tell you about the number of terms in the product 
(x+l) 
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Bach. ~a the ward o~ v~umbens 

The last. section showed how area presents a nice algorithm for multiplying 
polynomials. Since numerical representations are polynomials of a sort, it 
should not be surprising that pictorial algorithms hold here as well. Given 
below are several illustrations of pictorial multiplication activity. 

CAR[) M1 -Decimals 

.2 

.03 

,—

.02 ~' 

.005 

. 0017 

• 00021 ~// 

. 02G91 

.O1 .007 

,.02 .002 .0014 

. 03 03 .00021 

CARD M2 -Rationale greater than 1 

2 1/5 x 1 3/7 

2+1/5 6/7+3/35= 2+7/35+30/35+3/35 

= 2 + 40/35 

= 3 + 5/35 

= 3 1/7 

2 1~5 

i 2 1/5 

6/J/ 3/35 
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CARD M3 - Whole Plumbers 

451 x 712 

28000 
7500 
2000 ~ 
110 ~ 
2 ~-

37612 

700 

10 

40 0 50 1 

.280_ %0 3500 700 

400~50~ 10 

800 100 2 

Note: These algorithms represent one "understanding" approach to computa-
tion. From the last example, one can see that these are just models for a par-
tial products approach. If one wished to add more realism to the problem, the 
student could construct "scale drawings" of the numbers for the sides of the com-
putational rectangle. 

SUMMING UP 

The excursion using rectangles from numbers to polynomials and back was 
done for 2 purposes. Most importantly, it illustrates how physical and pictorial 
activity contribute to mathematics learning at several grade levels through the 
use of playing with "form". The second purpose was to illustrate that physical-
pictorial activity was easy and inexpensive to use. 

From the above, a teacher could expect to use activity extensively and 
at little cost. If such activity proved effective, it would clearly be cost-
effective. There is no case from hard data that can be made that such activity 
represents a universal success. Yet it is hoped that the range of simple ac-
tivities suggested above will give you the "rect"-angle on the use of mathe-
matical activity in your classroom. From these suggestions, you may. see many 
more ways to simply design active mathematical experiences which will be fun 
and productive for your students. 
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Toying with TAD 
Psychologists doing research in the area of human problem-solving have 

discovered a phenomenom called "functional fixedness", which refers to the ten-
dency humans have to identify objects with some specific role or function. In 
many cases, this identification is so strong that it impedes productive problem-
solving. This occurs when problem-solvers cannot see some given object as being 
a tool which might help them because they have fixated on the standard function 
which the object serves and this use differs from the one required to solve the 
problem. 

Some mathematics teachers sometimes exhibit a form of functional fixation 
with respect to teaching aids. In this variation of functional fixedness, one 
particular use of a teaching aid is so strongly identified with the aid that it 
tends to block out its other potential uses. Hence, for example, Cuisenaire 
rods are employed almost exclusively to teach basic number operations to young 
children and rectangular grids are seldom used except for purposes of "graphing". 
To say that some mathematics teachers tend to functionally fixate with regard to 
some of their teaching aids is, in some sense, to say that they are not getting 
as much "mileage" out of these aids as they might. 

Of the many types of mathematics teaching aids, perhaps the worst "mile-
age-getters" of all are mathematical games. Many teachers use mathematical 
games as a form of reward: "If you answer all your questions correctly, then you 
can go to the back of the room and play 'Cube-Fusion' or 'Hi-Q'." and so on. 
While this is certainly one valid use of these aids, it is likely that fixating 
on the reward function may well lead a teacher to overlook some of the other 
functions this type of aid might serve. This would be most unfortunate since 
some of these mathematical games offer extremely rich frameworks for significant 
mathematical activity on the part of students. 

The remainder of this article attempts to substantiate this position by 
outlining some of the mathematical activities which might be generated by the 
structural game called "Think-a-Dot". Although this game is easily obtainable)
and can be found in many classrooms, it very seldom (at least in the experience 
of the author) is used as anything other than a toy. Following a description 
of the game (the manufacturers prefer to call it a "computer"), a range of ac-
tivities which "Think-a-Dot" (or TAD) suggests are briefly described. For the 
sake of convenience, these activities have been subdivided into those which 
might be appropriate for learners at 4 different educational levels: elementary, 
junior high, senior high and university. (Teachers should regard with some 
suspicion the recommended age levels for mathematical games. TAD is usually 
prescribed for Grades IV to VIII with almost no suggestions as to how it might 
be used.) Mathematics educators have recently started to consider "process 
objectives". It is worth noting that mathematical games like TAD provide an 
excellent framework for practicing mathematical processes such as "generalizing", 
"proving", "symbolizing" and "clarifying" (Morley, 1973). 

1"Think-a-Dot" is available from Western Educational Activities Ltd., 10577 - 97 Street, 
.Edmonton, for $3.75. 
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TAD is a small plastic box with dimensions approximately 6" x 5" x 1 1/2" 
(see photograph). On one face, there are 8 "windows" arranged in a 3-2-3 pattern, 
behind each of which the color yellow or blue appears. At the top of the box there 
are three "holes". When a marble is dropped in any of these holes, some of the 
windows "change color" and the marble emerges on either the right or the left 
side of the box. Inside the box there is a "flip-flop" inclination changing 
the color of its window at the same time. Certain positions or "states" can 
be set on the face by either tilting the box or by changing the color of each 
window individually. 

The following activities/games/problems are certainly not the only ones 
that are suggested by TAD nor are they necessarily either the most obvious or the 
best. They serve only to indicate some of the possible areas open to investiga-
tion. For any learner, the most interesting questions are the ones he himself 
poses. Students should be encouraged to generate, and to work on, their own 
problems. The job of the teacher in this case is to help students learn how to 
attack these problems. Conjectures should be formulated, tested and modified. 
In some cases, it may be possible to construct proofs. Some problems, such as 
those relating to symbolization and notation, will be found at all age and grade 
levels. However, it is to be expected, for example, that older students will 
have more sophisticated systems of representation and terminology. 

"Think-a-Dot" 
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ELEMENTARY LEVEL ACTIVITIES 

With elementary school students, one may wish to play various sorts of 
prediction games. 

One prediction game which any number of children could play is Exit I. 
In this game, each player chooses an "exit side" and drops marbles until a 
marble exits on the "wrong" side. The winner is the player having the highest 
number of correct exits after some fixed number of turns. A variation on this 
basic theme can be introduced by limiting the number of drops that any player 
can make in a row in any one hole. 

Exct 11 

In Exit II, each player predicts the side that a marble, dropped in a 
particular hole, will exit on. The winner is the player having the most correct 
predictions after, say, 10 drops. Amore difficult version of Exit II is one 
in which the blank face of TAD, rather than the window face, is facing the 
players. 

Ore-Chav~y e 

A type of two-player game suitable for this level is the One-Change game. 
In this game, a player chooses one of the 8 windows and challenges his opponent 
to have it changed in color after, say, 3 drops. After perhaps 5 turns, the 
player who has most frequently been able to meet his opponent's challenge is 
the winner. Variations can be introduced by limiting the position of the chal-
lenge holes or by increasing the number of holes to be changed. 

JUNIOR HIGH LEVEL ACTIVITIES 

At the junior high level, students should be able to work on problems 
such as those relating to a binary representation of the states of TAD. How 
many different states are there in TAD? How can these states most conveniently 
be represented? According to the representation(s), what characterizes all 
states which have a blue window in the upper left-hand corner? 

Given one state, how many drops are required to change TAD to another 
given state? If it is possible to move from one state to another by a series 
of drops (Note that this isn't always possible:), is this number of drops 
unique? (It isn't, but what can you say about it?) 

Competitive games appropriate for this age group include: the Ratio 
game (from a given state, one player challenges another to make the ratio of 
blue windows to yellow windows say 3:5, in as few drops as possible); the 
Maximum-change game (from a given state make, say, 3 drops and change the colors 
of as many windows as possible); the Symmetry game (in as few moves as possible 
produce, say, a top row which is color-symmetric, or anti-symmetric, to the 
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bottom row); and the Lines game (from a given state, produce after, say, 3 drops 
as many blue or yellow "lines" - three windows in a row - as possible). 

SENIOR HIGH L~V~L ACTIVITIES 

Senior high students might like to address themselves to TAD problems 
such as "accessibility", "operator analysis", "proof" and "duality". 

Acce~~tib-i.?.t~y 

From a given state, only certain other states are accessible. These 
are the states that can be reached after a series of drops. How many of these 
accessible states are there for any given state? Characterize them. Does 
your representation method give you any insights into the problem of accessibil-
ity? What does "parity" have to do with accessibility? Put an upper limit on 
the number of drops required to transform a given state into some other accessible 
state. 

O~elccrtan Avia~.y3~ 

Consider any finite sequence of drops to be an operator. (Use some 
method of distinguishing the 3 different types of drops. We will use "1", "m" 
and "r" for drops in the left, middle and right holes respectively.) How many 
"essentially different" operators are there? (There are 128.) Given any operator 
(say lmlrmmrllmrllrll), can you find its "canonical" representation? To what 
extent are operators independent of states? 

Pn.aa 

Prove the following "theorems" about operators: 

1. 1a=m8=ra=1 (the identity operator). 

2. 12m2r2= 1. 

3. lm=m1, lr=rl, mr=rm. 

For example, tc prove tha~ 1a-1, consider the fol~;owing diagram which 
shows the number of "window changes" brought about by 8 drops in the left hand 
hole. 

Generalize Theorem 2. 

Prove one part of Theorem 3 in 2 different ways. 
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Du.a.P..(x y 

Call states which differ in color in every window dual states. Call an 
operator which transforms a given state into its dual, a dualizing operator. Is 
the dual of a given state always accessible from that state? (Yes. Proof?) 
What is the minimum number of drops in a dualizing operator? Give an example of 
a state which dualizes in this number of drops. How many of these states are 
there? Characterize them. How many states can be dualized in 4 drops? General-
ize. Prove. Define "inverse-operator". Which operators are self-inverse? 
What is the relation between self-inverse operators and dualizing operators? 

UNIVFRSITy LFVFL ACTIVITT~S 

The following activities involve concepts not usually encountered at the 
secondary school level. They might, however, provide an introduction to such 
concepts for the capable high school student. In fact the number of quite 
sophisticated mathematical concepts embodied by this so-called toy is surprisingly 
high 

TAD a~ campusetc 

From a mathematical viewpoint all digital computers are finite state ma- 
chines Or dutomata. A finite state machine is "a five-tuple [A, S, Z, u, v] 
where A is a finite list of input signals, A = ao, al, ..., an Z is a list of 
output signals, Z = Zo, Z1, ..., Zm ; S is a Set of internal states, 
S = so, sl, ..., sr u is a next--state function from SZA into S and v is an 
output function from SZA into Z (Birkhoff & Bartee, 1970, p.68)". 

Can TAD be considered a finite state machine? If so, what are the values 
of n, m and r? Is it possible to construct a state diagram and a state table 
here? (See Berkhoff and Bartee, 1970, especially Chapter 3, for an elaboration 
of this topic.) 

Gtcau~-~heanett.c u~s~ec~ a~ TAD 

Does the set of operators, G, form a group? If so, what is the order 
of the group and what properties does it have? Consider the set of self-inverse 
operators, H. Is H a group? Can you find a subgroup of H? Is this a normal 
subgroup? Why? What special set of operators is a subgroup of H? 

Consider. the Abelian group, M, which has a presentation a,b,c: 

a8=b8=c8=a2b2c2 Is M isomorphic to G? (See Macdonald, 1970, especially 
Chapter 8 for an elaboration of this topic.) 

Cam~u~etc-~-imueuti..an a~ TAD 

TAD presents many opportunities for computing science students to practice 
their programming skills. One good project, particularly for students who have 
access to some form of visual display apparatus, is the programming of a computer 
simulation of TAD. It may also be interesting to consider TAD-like systems which 
differ in only a few ways from TAD. 
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What Boolean algebra aspects does TAD have? How is the question of ac-
cessibility related to the concept of equivalence classes? 

CONCLUSION 

In the preceding sections, an attempt has been made to substantiate the 
claim that there is more mathematical potential in some common teaching aids 
than is usually recognized. Although TAD may be a particularly rich situation, 
similar activities can be created centering on other aids. The mutual formulation 
and investigation of such activities is, in the opinion of the author, a most 
worthwhile pursuit for both mathematics teachers and mathematics students. 
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Representing a reflection in the plane 

In reading mathematics education journals or attending conferences, one 
is struck by the increasing popularity of motion geometry as a way of bringing 
geometry back into the mathematical mainstream and as a natural way of reviving 
student interest in geometry. 

There are many specific reasons for including motion geometry in the 
mathematics curriculum.l This author will not review these arguments for motion 
geometry but will pass directly to a review of some easy ways to model a line 
reflection in the plane. The line reflection, after all, is the basic building 
block of all motion geometry. 

Mathematically, the line reflection in a plane has the following definition: 
Line Reflection of a Plane: Given a point x and a line b, xl is the reflec-
tion of x in line b if and only if b is the perpendicular bisector of the 
line segment determined by x and xl. 

In the remainder of this article, 5 easy ways of modelling a line re-
flection will be catalogued. 

M~THUDS U~ LINE RFFL~CTIUN 

Cv rv~ ~iu~.c~.i.a n 

There is an obvious way of finding the reflection of a point in a line 
simply by constructing it with a compass and straightedge. In the diagram 
below, a line perpendicular to line b and passing through point x has to be 
constructed. Then xl, the reflection of x in line b is constructed on this 
perpendicular so that it is in the opposite half-plane of b from x. Further-
more, xl must be the same distance from b as x is from b. 

b 

1The mathematics teacher since 1968 has had a number of articles which make a strong case 
for motion geometry. 
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Pa~elc ~a.2cli.ng 

In the diagram below, x is to be reflected in line b. 

1. Mark the point x heavily with a soft-leaded pencil. 
2. Fold the paper along line b, as in Figure 2. 
3. After the folding, one should be able to see the markings for point x through 

the paper. On the backside of the paper, mark the position of point x with 
a pencil 

4. Open the paper and one will find that some of the marking from x will have 
been transferred to another point. This marks point xl, the reflection of 
point x in line b. 

bX 

M-uca 

Figure 1 
X~ 

b Figure 2 

Mira2 is a commercially available device that can be used to illustrate 
a line reflection. Incidentally, this device could be nicely used in a physics 
class when dealing with reflections there. The device is pictured below. It 
is made of some type of red plexiglass material. Again we have a point x which 
is to be reflected in line b. Now the bottom edge of the Mira is placed along 
the line b. By looking at the Mira one can see the reflection of point x. By 
reaching behind the Mira, one can mark the point xl in line with the reflection 
of point x. The point xl is the reflection of x in line b, as before. The . 
plexi-glass material is both transparent and also reflective. A silvered mirror 
would not work because i~t would not be transparent. 

7nav~s~a~s~.ion 

Again we have a point x which is to be reflected in line b (Figure 1). 
1. Mark an arbitrary point z ox~ line b (Figure 3). 
2. Lay another sheet of paper down on top of the original sheet. Mark point x, 

point z and line b on this second sheet. 
3. Turn the second sheet over using line b as an axis. Lay it down on top of 

the first sheet so that line b and point z in the two sheets correspond. 
Point x in the second sheet now corresponds to point xl in the first sheet. 
xl is the reflection image of x. 

zMira is sold by Moyer-Vito Ltd., 10924 - 119 Street, Edmonton. The device sells for $2.95 
individually or $2.36 each in classroom lots of 32 or more. A brochure is included which ex-
plains uses. 
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4. The position of xl can be marked by sticking a pin through point x in the 
second sheet. If a soft-leaded pencil is used on the second sheet then xl 
could also be determined in a manner similar to that of method two above. 

b 

Z~ 

.X 

Figure 3 

L~.ne ne~~ec~.vv~ ~.n .the cvvndi.via~e p~.ane 

Fi gure 4 

Performing line reflections in the coordinate plane is another easy and 
valuable experience in motion geometry. As an example, let the line of reflection 
be the graph of x = 4. Then the reflection of (7,3) will be (1,3). The points 
and lines of reflection can be varied to provide much valuable experience in 
motion geometry and also in the coordinate plane. 

CONCLUDING REMARKS 

In the examples given above, a single point was reflected in a line. 
Mathematically, a reflection in a line is defined point-to-point. However, in 
the classroom different kinds of geometric figures should be reflected in lines 
besides single points. 

What conjectures can be made when a geometic figure is reflected in one 
line and that image is then reflected in a second line? This is an example 
of an open-ended question that would furnish a good introduction to motion 
geometry. 

Reflections in a line lead naturally to symmetry conditions. Mathematical-
ly, symmetry can be defined only in terms of reflections. 

Invariance is a key idea in motion geometry. What properties or char-
acteristics of some geometric figure also hold for its reflection image? This 
is the essential question in experiments with invariance. 

The 3 methods - paper folding, Mira, and transposition - mentioned above 
appear to be more valuable as mathematical experiences than do construction and 
line reflections, which both are less illustrative of the intrinsic properties 
of a line reflection. These judgments should be considered in choosing class-
room models for a line reflection. 
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In working with the Mira method, does the relative position of the eye, 
with respect to point x and line b, make any difference? A good amount of math-
ematics and experimentation is involved with that question. 

In this article, some models for a line reflection in the plane have been 
described along with some questions and ideas that lead on from such an intro-
duction. The author hopes that classroom teachers will be able to try out some 
of the ideas described here. The author would enjoy hearing from anyone who 
has tried any of these methods or others. 
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An aid to uncovering' mathematics: a select bibliography 

Some mathematics teachers have traditionally thought of their work in 
terms of "covering topics". Given a class and a certain number of periods per 
week, one took a textbook and proceeded to cover the .material. It was all 
quite straightforward, but there were two problems. The first was that for all 
too many students, one might just as well have been covering "Geometric Con-
structions", or whatever, with a blanket. The other problem was that over the 
years the danger of slipping into a pedagogical rut was very great. 

Many teachers now find it helpful to think, not just in terms of "cover-
ing "topics, but also in terms of "uncovering" them as well. Instead of just 
pulling students through a well-trave lled but narrow groove, .they attempt to 
open up to students a number of alternative areas related to a given topic. To 
work effectively in this manner, however, one needs to have a knowledge of a 
considerable range of source materials. The writer has found the following 
books to be of help in "uncovering" mathematics, both for himself and for his 
students. Hopefully they will be of use to other mathematics teachers as well. 

Three particular groups of teachers have been kept in mind during the 
compilation of the bibliography. They are: 
- those who are in a position to suggest library purchases in their school; . 
- those seeking sources fior "option" or "enrichment" lessons; 
- those wishing to increase their own mathematical knowledge. 

Mathematical soundness was the only essential criterion that the books 
had to meet. The bibliography is by no means exhaustive but does include a 
large percentage of what the writer believes to be the best works in the field. 
To maximize information while minimizing space the following coding system has 
been employed: 

* recommended 
** highly recommended 
*** most highly recommended 

$ good value for money 
$$ especially good value for money 
hb hardback edition 
pb paperback edition 

The "reading level" for each book has been estimated on a scale ranging 
from (1) to (6). The scale is roughly linear, with books graded (1) being 
readable by the least capable junior high students and those graded (6) being 
readable by the most capable senior high students. 

Nearly all the titles should be obtainable through any good bookstore 
and most of the books will be available through the larger libraries. Book 
prices have been obtained from the 1972 edition of aooks in print. A question 
mark following an entry signifies that the information was not verified. 
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A few titles are available only in the United Kingdom; these have U.K. 
following the publisher in the entry. Several titles are significantly cheaper 
in their U.K. editions and are priced U.K.£ W. Heffer and Sons Ltd., 20 
Trinity Street, Cambridge, England CB2 3NG, have an efficient and friendly mail-
order service. They can also be paid in Canadian funds by cheque; £1.00 is ap-
proximately $2.52. 

For convenience, the bibliography has been divided into five sections: 
Texts and teachers' handbooks, Special topics, General surveys, Recreational 
and activity, .and Associations, journals and bibliographies. 

TEXTS AND TEACHERS' HANDBOOKS 

Banwell, C. et az, Starting points. Oxford University Press, 1972, 246 pp. 
► ***, (3), pb $7.75 (U.K. £ 2.75). Described as a "collection of sugges-
tions for the teaching of mathematics", this highly imaginative, lively, 
handbook has sections on methodology, situations and materials. Appropri-
ate for junior high school and upwards; British terminology. 

Del Grande, J.J. et az, Math, book z. Gage Educational, 1971, 342 pp. 
► ** (2), hb $5? The first text in anew series written in Ontario. The 
second volume, Matra, book 2, for Grade VIII, appeared in 1972; others are 
to follow. A smooth integration of standard topics such as ratio with non-
standard ones such as Papygrams and Pick's Theorem. Colorfully illustrated 
and well produced. 

Hess, A.L., Mathematics projects handbook. D.C. Heath, 1962, 60 pp. 
► (4),pb $2? Although somewhat dated, this pamphlet still has a number of 
worthwhile suggestions for the teacher considering project work. Topic 
list and bibliographies. 

Jacobs, H.R., Mathematics: a human endeavor. W.H. Freeman, 1970, 529 pp. 
► **, (4), $, hb $8.50. Subtitled "A textbook for those who think they 
don't like the subject", this book is just that. A painless introduction 
to functions, logs and statistics with well-chosen, interesting exercises. 
Generously, aptly and humorously illustrated. A must for "Peanuts" fans 
and libraries. 

Johnson, D.A. and G.R. Rising, Guidelines for teaching mathematics, second edi-
tion. Wadsworth, 1972, 544 pp. 
► (5), hb $9.a5. Probably still the best of the "Math Ed" texts. Sometimes 
rather stuffy but complete. Very good appendices on instructional aids, 
enrichment materials and publications. 

Pdling, D. et a1, Making mathematics 1, second edition. Oxford University Press, 
1971, 95 pp. 
► **, (1), $, hb $1.50? (U.K. £0.50). The first of a four volume series 
intended for the "non-academic" secondary school student in Britain. Sim-
plicity without condescension. Workbooks and topic books are available to 
accompany the course. 
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Wheeler, D.H. (ed.), Notes on mathemati cs in primary schools. Cambridge Univer-
sity Press, 1969, 340 pp. 
► **, (3), $pb, pb $5, hb $10? (U.K. pb £1.50, hb £3.15). By members of 
the Association of Teachers of Mathematics in the U.K. Don't be misled by 
the title; this is a treasure-trove of starting points from elementary 
school to senior high. Well illustrated; bibliography. 

SPECIAL TOPICS 

Adler, I. , Margic house of numbers. Signet, 1957, 126 pp. 
► (2), $pb, pb $0.60 (hb $3.69, John Day). One of the better collections 
of number curiosities, calculating tricks and games. 

Bell, E.T., Men of mathematics. Simon and Schuster, 1963?, 596 pp.? 
► (4), $pb, pb $2.95, hb $7.95 (U.K. pb £0.60, 2 volumes, Penguin). Bio-
graphies of some 30 mathematicians from Zeno to Cantor. An entertaining 
presentation which emphasizes the social context of the mathematician's 
work. 

Sudden, F.J., An introduction to number scales and computers. Longmdns (U.K.), 
1965, 192 pp. 
► *, (4), pb £0.65. A comprehensive survey of "bases" with applications 
ranging from the elementary to the complex. Good exercises with answers; 
bibliography. 

Lundy, H.M. and A.P. Rollett, Mathematical models, second edi ti on. Oxford Uni-
versi ty Press , 1961 , 286 pp. 
► **, (5), $, hb $6.50 (U.K. £1.50). The classic work in this area. Models 
of al l sorts : wire, wood, perspex; l i nkages , knots , curves ti tchi ng, poly-
hedra. Just the thing for the "meccanno"-ly minded. Lots of "real" mathe-
matics here; bibliography. 

Davis, P.J., The lore of large numbers. Random House, 1961, 165 pp. 
► *, (4), pb $2.50. A title in the SMSG monograph series. A potpourri of 
number lore at many levels. A good reference to have around; excellent 
problems and appendices. 

Fielker, D.S., Topics from mathematics. Series. Cambridge University Press, 
1967 and on, 32 pp. 
► *, (1), $, pb $1 (U.K. £0.30). Fielker has written four booklets in this 
series - "Cubes", "Computers","Towards probability" and "Statistics". The 
series (See also J. Mold.) is straightforward and well written. Junior 
high students would enjoy working through some of them for a project. 

Gardner, M., Mathematics, magic and mystery. Dover, 1956, 176 pp. 
► * (3), $$, pb $1.50. One of Gardner's earlier books but of the high 
quality we have come to expect from him. Just the thing for the back-
corner blackjack players or the nimble-fingered teacher. 

Golomb, S., Polyominoes. Scribners, 1965, 181 pp. 
► ** (3), hb $6.50. Golomb invented polyominoes when he was a graduate 
student at Harvard in the early 1950s. This "space filling" situation (the 
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3-dimensional version is marketed as "Soma") has appeal at all levels. 
Some fairly high level combinatorial theory can be painlessly taught here. 

Johnson, D.A. and W.H. Glenn, Exploring mathematics on your own. Series. 
McGraw-Hill, 1961, 64 pp. 
► *, (3), pb $1.80 per booklet. There are 16 titles in this series: "Ad-
ventures in graphing", "Basic concepts of vectors", "Computing devices", 
"Curves in space", "Finite mathematical systems", "Fun with mathematics", 
"Geometric constructions", "Logic and reasoning", "Number patterns", "Nu-
merati on systems" , "Probabi 1 i ty and chance" , "Pythagorean theorem" , "Sets" , 
"Shortcuts in computing", "World of measurement" and "World of statistics". 
They make good companion or enrichment booklets to many areas. 

Mold, J., Topics from mathematics. Series. Cambridge University Press, 1967 
and on, 32 pp. 
► * (1), $, pb $1 (U.K. £0.30). Mold's titles in this series are: "Circles", 
"Rolling", "Solid models", "Tessellations" and "Triangles". See comments 
on D. Fielker. 

Stover, W., mosaics. Houghton-Mifflin, 1966, 34 pp. 
► *, (5), pb $2? A small but fully-packed booklet on nets/tiling patterns. 
Exercises, project suggestions and bibliography. 

Walter, M.I., Boxes, squares and other things. NCTM, 1970, 88 pp. 
► *, (3), pb $1.80. Subtitled "A teacher's guide for a unit in in#ormal 
geometry", this booklet describes a mathematical journey from carton fold-
ing to group theory. Suggestions for extension of work and an excellent 
bibliography. 

Wenninger, M.J., Polyhedron models. Cambridge Univers ity Press, 1971, 208 pp. 
► *, (4), hb $15? (U.K. £5). This book presents 119 polyhedra,. from the 
tetrahedron to the great dirhombicosidodecahedron. Photographs, nets and 
advice for every polyhedron; bibliography. (Caution - may be addictive.) 

Wisner, R.J., A panorama of numbers. Scott Foresman, 1970, 176 pp. 
► **, (4), $, pb $2? A delightful introduction to number theory. The com-
plete preface to this book reads, "I wrote this book because I wanted to." 
We should be pleased that he did. 

GENERAL SURVEYS 

Bergamini, D., Mathematics. Time-Life Books, 1963, 200 pp. 
► **, (3), hb $7.60. A volume in the Life Science Library with 8 well-
written chapters. Superbly illustrated; another library must. 

Hogben, L., mathematics in the making. MacDonald (U.K.), 1960, 320 pp. 
► *, (5), hb £3.50. Awell-written and profusely illustrated view of the 
development of mathematics. Despite the generally advanced nature of most 
of its topics, junior high readers could browse with benefit. 
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Kasner, E. and J. Newman, Mathematics and the imagination. Simon and Schuster, 
1964?, 380 pp.? 
► *, (5), $U.K., pb $1.95, hb $4.50 (U.K. £0.40, Penguin). Some quite 
original material in this classic. Chapters on puzzles, paradoxes, topology 
and calculus are written with flair and are well illustrated. 

Kline, M. (ed.), Mathematics in the modern world. Freeman, 1968, 409 pp. 
► **, (6), $pb, pb $6.50, hb $10. A collection of 50 readings taken from 
Scientific American over a period of 20 years. Sections on biography, 
foundations and applications. Compact, well written articles, most by 
first-class mathematicians, make this a valuable reference volume. 

Newman, J.R. (ed.), The world of mathematics. Simon and Schuster, 1956, 2,537 pp. 
► **, (6), $pb, pb $15, hb $30. Subtitled "A small library of the litera-
ture of mathematics from A'h-mose the scribe to Albert Einstein presented 
with commentaries and notes", this massive 4-volume set is brilliantly 
edited, and contains much material that is almost impossible to obtain 
elsewhere, including original papers and large sections of out-of-print books. 
The Volume titles are: 1. Men and numbers, 2. World of laws and the world 
of chance, 3. Mathematical way of thinking, 4. Machines, music and puzzles. 

Sackett, D. , The discipline of numbers: foundations of mathematics. S. LOW, 
Marston (U.K.), 1966, 128 pp. 
► *, (3), $, hb £1.70. A volume in the Foundations of Science Library, 
this book has an applications orientation to most of the standard secondary 
school topics. Very well illustrated. 

Sawyer, W.W., Introducing mathematics. Series. Penguin. 
► *, (5), $. This 3-volume set contains a wealth of teaching methods and 
suggestions. Sawyer has no peer as a popularizer of traditional mathematics. 
The volume titles are: 1. Vision in elementary mathematics, 1964, 346 pp., 
pb $1.75 (U.K. £0.40), 2. The search for pattern, 1970, 349 pp., pb $1.95 
(U. K. £0.40), 3. A path to modern mathematics, 1966, 224 pp., pb $1.25 (U. K. 
£0.30). Two earlier books of considerable merit also are Mathemati cian's 
delight, 1943, 238 pp. , pb $1.25 (U. K. £0.20) and Prelude to mathematics, 
1955, 214 pp., pb $1.25 (U.K. £ 0.20). 

Stein, S.K. , Mathematics: the man-made universe, second edition. Freeman, 1969, 
415 pp 
► *, (6), hb $8.50. Subtitled "An introduction to the spirit of mathematics", 
this book catches the flavor of mathematical research in several of the 
chapters. High-powered but not overwhelming; extensive exercises and 
references. 

RECRFATIUNAL AN1) ACTIVTTy 

Brill , W.W.R., Mathematical recreations and essays, 11th revised edition. MdC-
millan, 1939, 418 pp. 
► **, (5), $$pb, pb $2, hb $6. The granddaddy of the mathematics recrea-
tion books, with the first edition in 1892. This edition is revised by 
H.S..M. Coxeter. Crammed full of material; quite a few "new" games can be 
found if one is diligent. 
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Domoryad, A.P., Mathematical games and pas times. Pergamon (U.K.), 1963, 298 pp. 
► **, (5), hb £2.05. The Russian view of most of the standard mathemati-
cal recreations, which frequently differs significantly from the western 
approach. 

Gardner, M. , Scientific American book of mathematical puzzles and diversions. 
Simon and Schuster, 1959, 178 pp. 
► ***, (4), $p~ $$pb U.K., pb $1.45, hb $5.95 (U.K. 0.30, Penguin). 

  Second Scientific American book of mathematical puzzles and diver-
sions. Simon and Schuster, 1961, 253 pp. 
► ***, (4), $pb, $$pb U.K., pb $1.95, hb $4.95 (U.K. 0.30, Penguin). 

  New mathematical diversions from Scientific American. Simon dnd 
Schuster, 1966, 253 pp. 
► ***, (4), $pb, pb $2.95. 

Tf~ese books are the first 3 collections of Gardner's excellent monthly 
column, "Mathematical games", in scientific American, which has been 
running continuously since 1956. Gardner writes with great clarity. 
His column now serves as a meeting point for some of the best mathe-
mati cal minds of the day. , 

Kraitchik, M., Mathematical recreations, second revised edition. Dover, 1953, 
330 pp. 
► *, (5), $, pb $2.50. Another classic, this book is based on articles 
from the recreational mathematics magazine, sphinx, which was published in 
the 1930s. 

Lukacs, C. and E. Tarjan, Mathematical games. Pan, 1970, 192 pp. 
► *, (2), $$pb, pb $1, hb $4.95 -Walker. A Hungarian view of recreational 
mathematics. Of particular value are some analyses of popular games such 
as Solitaire (Hi-Q). 

Merrill, H.A., Mathemati cal excursions. Dover, 1957, 145 pp. 
► *, (3), $, pb $1.50. Subtitled "Side trips along paths not generally 
travelled in elementary courses in mathematics", this is a particularly 
clearly written exposition of several recreational stalwarts. 

Pedrey, J.F.F. and K. Lewis, Experiments in mathematics. Longmans (U.K.), 1966-
67, 64 pp., 3 "stages". 
► *, (3), $, pb £0.35. A collection of activities for a lab-type approach. 
Appropriate for the junior high level. 

SteinhaUS, H. , Mathematical snapshots, second edition. Oxford University Press, 
1969, 311 pp. 
► *, (4), hb $7.50. A collection of several quite original recreational 
mathematics topics from a noted Polish mathematician. Particularly good 
use of photographs. 
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ASSUCIA7IONS, JOURNALS ANA BIBLIUGR,4PHTES 

Association of Teachers of Mathematics (ATM). Mathemati cs Teaching 1S the stim-
ulating quarterly journal of this very active U.K. association. Overseas 
membership (at $8 per annum) includes a subscription. The ATM also pub-
lishes a number of excellent pamphlets such as Dick Tahta's Pegboard games 
($0.75) and Examinations and assessrr~nt ($1.25). Write ATM, Market Street 
Chambers, Nelson, Lancashire, England 669 7LN. 

Hardgrove, C.E. and H.F. Miller, Mathematics Library: elementary and junior high 
school. NCTM, 1968, 50 pp. $0.80. Annotated bibliography. 

Mathematics Council of The Alberta Teachers' Association (MCATA). Delta-x is 
the quarterly newsletter of MCATA, which is affiliated with NCTM. Member-
ship of $5 per annum includes subscription to Delta-x and the monographs 
as published. Write MCATA, Barnett House, 11010 - 142 Street, Edmonton, 
Alberta T5N 2R1. I 

National Council of Teachers of Mathematics (NCTM). The Mathematics Teacher l 
and the Arithmetic Teacher are the two~najor journals of NCTM, having, res-
pectively, secondary and elementary school orientations. The subscription 
fee, which includes NCTM membership, is $9 for one journal or $13 for both, 
per annum. Eight numbers of each journal are published per annum. NCTM 
also publishes The Mathematics student Journal four times per annum, which 
is $0.60 for NCTM members or $2.50 for 5 subscriptions, and many other 
very good pamphlets and books on mathematics education. Write NCTM, 1201 -
16 Street NW, Washington, D.C. 20036. 

Schaaf, W.L., A bibliography of recreational mathematics. NCTM, Volume 1, 
fourth edition, 1970, 148 pp.; Volume 2, 1970, 191 pp. $3 and $4 respec-
tively. An essential for anyone seriously interested in recreational 
mathematics. 

  The high school mathematics library, fourth edition. NCTM, 1970, 86 pp. 
Annotated bibliography. 

Sawyer, W.W. (ed.), Student Mathematics, the Canadian student journal. Published 
annually in September (1972 issue was No.3). Send $0.10 per copy and a 
stamped, self-addressed envelope (at least 9"x4") to Student Mathematics, 
Room 373, College of Education, 371 Bloor Street W., Toronto 181, Ontario. 

1 Ol 



f Ji~ 

PRINTED AT 
BARNETT HOUSE 


	1 - 2 Front Matter
	3 - 4 Editorial
	5 - 14 Considerations for teachers using manipulative materials
	15 - 28 The geoboard: a versatile instructional aid
	29 - 32 Popsicle sticks as a manipulative device
	33 - 34 Numbo jumbo
	35 - 44 Simple computing devices for children to build and use
	45 - 48 What can you do with thumbtacks?
	49 - 58 Manipulative aids for developing concepts of three-dimensional space
	59 - 62 Anne Bernadene's tile
	63 - 70 The use of attribute blocks: K - XII
	71 - 84 Getting the 'rect'-angle on mathematical activity
	85 - 90 Toying with TAD
	91 - 94 Representing a reflection in the plane
	95 - 101 An aid to 'uncovering' mathematics: a select bibliography

