Materials：solids，paper，pencil．
－Take your 3－D solids one at a time and trace around all of their flat surfaces（faces）．
－Sort the solids into groups：
－those which can be used to draw circles，and those which cannot．
－those which can be used to draw squares and rectangles，and those which cannot．
－those which can be used to draw triangles，and those which cannot．
－those which have faces which cannot be traced and those whose faces can all be traced．
－Place the solids in order from the one with the most faces to the one with the least．
－Place the solids in order from the one with the most vertices to the one with the least．
－Place the solids in order from the one with the most edges to the one with the least．

If you could walk all around（and even under）these figures how many faces could you see on each？

Can you build a figure with exactly 20 faces？

Take a separate page for each solid．Trace all the faces for that solid on that page．Set the solid on top of its page．

Now try sorting the solids in the activity above．

By tracing around the edges of your solids，draw a picture of：
（a）a child playing with a ball at a beach，
（b）a child sledding down a very long hill，
（c）a cat made out of only triangles．

STILITEGI：Make a Modéty： ANSWEER：
The first figure has 18 ，the second 36 ．

Identify, name and describe specific 3-D objects as cubes, spheres, cones, cylinders, pyramids.

Materials: solids, small boxes, cans, balls, Toblerone chocolate boxes, etc., paper, pencil.

- Begin by folding your paper in half and unfold it again. Select one object you think has the same shape. Write the name of the solid at the top of the page.
- On the left side of the page trace all sides of the solid.
- On the right side of the page trace all sides of the object selected.
- With a line, connect one face on the left side of the page with a similar face on the right side. Do the objects have the same numbers of the same kinds of faces? Do the objects have the same number of edges? of vertices?
- On the back of the page write two sentences about what your solid can do (ie., can it stack? can it roll?). Can your chosen object do the same things?

I have 3 solids, only two of them are alike. Altogether these solids have 12 faces, 16 edges and 8 vertices. What solids do I have?

STIBITEAV: Guess \& Check ANSWER:

I have two cylinders and one rectangular prism.

Writing Corner: oo Oh my oh me, What can I be?
 l've only one face
 That you can't even trace!
 Write a poem like one

above that would get a friend to guess what kind
of solid you are describing.

Build a skeleton of a 3-D object, and describe how the skeleton relates to the object.

Materials: solids, toothpicks, marshmallows.

- Use toothpicks and marshmallows to construct a rectangular prism:
- How many toothpicks did you use? How many edges does your rectangular prism have?
- How many marshmallows did you use? How many vertices does your rectangular prism have?
- Repeat the above process, but construct a rectangular pyramid.
- Repeat the above process, but construct a triangular prism.
- Repeat the above process, but construct a triangular pyramid.

Francine wants to create a figure using toothpicks and marshmallows. She wants the figure to look like a clock tower with a cube on the bottom and a square pyramid on the top. What is the fewest number of
toothpicks and marshmallows she needs?

STIEATEGY: Act it Out ANSWERE:

Francine will need 9 marshmallows and 16 toothpicks.

Use the toothpicks to create two dimensional shapes (squares and rectangles) first and then join them together to make three dimensional shapes.
A. Build compound shapes such as a triangular prism with a triangular pyramid at each end.
B. Play a game: race to construct a cube. If you roll a 1 or 2 you can add a
marshmallow. Roll a $3,4,5$ or 6 to add a toothpick. You must start with a marshmallow.

Materials: color tiles.

- Work with a partner for this activity. Place 3 tiles on the table side-by-side:

- Pretend this is the start of a pattern. Build the pattern taking turns adding blocks. See who is first to make a mistake in the pattern.
- After you have added several tiles, rearrange your train by dividing it into rows where each red tile starts a new row. How many of each color did you use?
- Repeat as above, but use each of the following to start new patterns:

Red Green Yellow Blue Green Red Green

Corey lined up several buttons in order:

blue-red-black-blue-red-black, and so on.
How many buttons of each color are there in the first 25 buttons in the pattern?

再系

Begin with simpler patterns (e.g., use only an AB pattern) and have the students write several sentences about their patterns:

- how many of each color are needed?
- are there more of one color than another? etc.

ANSWEAR:

 FTIBITEGV: Make a ListCorey will use 9 blue buttons, 8 red buittons, and 8 black buttons-

Have the students:

- write sentences about their patterns.
- chart their patterns.
- act their pattern out (e.g.. every red tile you snap your fingers. clap for every blue (ile, ctc.).
- record the pattern using the $A B C$ notation.
- look for objects in the classroom which show patterns.

Match and make identical (congruent) 2-D shapes.

Materials: pattern blocks.

- Use as many pattern blocks of any kind as you wish to create a shape that looks like a dinosaur. Have a friend create a second dinosaur exactly like the first. How do you know the dinosaurs are identical?
- Now use the pattern blocks to make a shoe. Make the mate to the shoe.

- Use the pattern blocks to build a tree. Make three more and pretend it is a forest. What kind of animals live in your forest?

The silhouette of Teresa's shape built with pattern blocks is shown. She used exactly 7 blocks and exactly 4 of them were green. Can you build a shape like Teresa's?

Play a game of 20 questions:
The first player builds a shape using three pattern blocks. hidden from the second player.

The second player now tries to build the same shape of the same blocks by using clues earned by asking up to twenty yes/no questions.

