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INTRODUCTION 

High school mathematics teachers tend to see students' mathematical back-
grounds as very poor and their attitudes towards mathematics as improper, irra-
tional, and negative. On the surface, this seems to be an anomaly in view of the 
considerable efforts which have been expended in upgrading the elementary and 
junior high school mathematics programs. But could the "upgrading" have been 
misguided? 
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It is the writer's opinion that curricular reforms in school mathematics 
nave encouraged teaching approaches which run counter to natural learning 
processes. 

Piaget's theory of intellectual development clearly describes natural or 
true or living learning as originating from the child and his oum interests and 
drives. Too often the child comes to view "school learning" as a process of 
mastering this or that skill "for the teacher" or "to get by" or "to beat the 
system", whereas in real life the child learns from active interaction with his 
environment, doing things that are vitally interesting to him and for his ozun 
welfare. He explores, experiments, and modifies his behavior and conceptions of 
the world by means of basic self-fulfilling drives. 

It is essential that we organize the content and approaches in secondary 
school mathematics courses so that each student is able to build more effectively 
on the considerable talents he has already developed pursuing "real life" learning 
outside the classroom. To do so, we need to have some understanding of the ways 
in which our students learn and how their learning strategies are affected by 
their level of intellectual development at any given time. 

CONCR~7~ VERSUS POKMAL OP~RA7IUNS* 

Secondary school students are able, by and large, to operate with mathe-
matical ideas at either a Concrete operations level or a Formal operations level, 
or both. 

According to Piaget's research, the dominant thought structure for the 
majority of children in the age range of seven years to eleven or twelve years is 
that of the Concrete operations stage. However, the work of Lovell (and others) 
~~,ith British children suggests that it is only the very brightest children who 
progress beyond the concrete operations stage by the age of twelve when they are 
working with mathematical concepts. The majority of the British students do not 
emerge from the concrete operations stage until age fourteen or fifteen and some 
never do in the context of mathematical tasks (Lovell, 1971). 

However, as will be pointed out later, the pegging of ages to stages is 
much less important than realizing that children's and adult's thinking patterns 
~~o repeatedly progress through stages like those described by Piaget. 

t~lhat is concrete-operations-stage thinking like? As described by Hermine 
Sinclair (1971), one of Piaget's Genevan colleagues, in the stage of concrete 
operations, 

... the child can think in a logically coherent manner about objects 
that do exist and have real properties and about actions that are 
possible; he can perform the mental operations involved when asked 
purely verbal questions and when manipulating objects [pp.5-6]. 

'~Fc;r a more complete summary of Piaget's stages of intellectual development and a 
discussion of implications for elementary and secondary school mathematics 
education, see Harrison, 1969. 
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The concrete operation child "... can manipulate and think about real 
objects but he cannot work with hypothetical entities [Sinclair, 1971, p.6]." 

The operations available to the child in this stage of development include 
classification (putting objects together in a class and separating a collection 
into sub-classes), and serration (ordering things, like numbers, or events in 
time). 

Again as Sinclair (1971) has said: 

These operations are transformations that are reversible, either 
through annulment (as in the case of adding, annulled by subtracting) 
or through reciprocity (as in the case of relationships: A is the son 
of B, B is the father of A) [p.7]. 

Using their classification skills, concrete operational children can 
successfully make comparisons between a general set of objects and its subsets; 
they can determine elements in the interaction of given sets; they can find 
missing elements in double-entry tables. Their serration notions enable them to 
cope successfully with transitivity arguments such as: if A > B and B > C, then 
A > C ~p.9]. 

During the concrete operations stage, the types of reasoning made possible 
by these operations become more powerful and are applied in more and more difficult 
contexts, paving the way for much more general formal operations. 

As Lovell (1971) has indicated, "from around 12 years of age in the 
brightest pupils and from 14 to 15 years in ordinary pupils, we see the emergence 
of formal operational thought [p.7]." This stage is characterized by the devel-
opment of formal, abstract thought operations with which the adolescent can rea-
son in terms of hypotheses and not only in terms of objects. Prior to this level 
of development, the child thinks concretely rather than reflectively, dealing 
with each problem in isolation and not integrating his solutions by means of any 
general theories from wriich he could abstract a common principle. In contrast, 
the adolescent is most interested in theoretical problems and constructing theo-
retical systems (Piaget, 1968). The adolescent can identify all possible factors 
relevant to a problem under investigation, and he can form all possible combina-
tions of these factors, one at a time, two at a time, three at a time, and so on. 
He can form hypotheses, construct experiments to test the hypotheses against real-
ity, and draw conclusions from his findings. He need no longer confine his atten-
tion to what is real but can consider hypotheses that may not be true and work 
out what would follow if they were true. That is to say, in addition to considering 
what is, he can consider what might be. The hypothetico-deductive procedures of 
mathematics and science have become open to him (Piaget, 1964; Inhelder, 1962; 
Adler, 1966; Berlyne, 1957). 

16ARNING CyCL6S 

An interesting interpretation of Piagetian theory is the view that the 
concrete operations used by an individual are "concrete" in the sense that they 
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are mental operations involving some system of objects and relations that is 
perceived as real by the person. What is "concrete" is relative to the person's 
past experience and mental maturity. While the kindergarten child considers the 
union of two beads with three beads as a concrete operation but the addition of 
2 and 3 as not, the introductory algebra student considers 2 + 3 as concrete but 
not x + y. The student of introductory abstract algebra considers the additive 
group of integers to be concrete but not so the concept of an abstract group. 
So the progession goes, and it is evident that "concrete" operations are used 
not only in the concrete operations stage, in which they are the most advanced 
operations of which the child is capable, but also at all succeeding levels of 
learning. In the development of new concepts at any level it is essential to 
proceed from what the learner perceives as concrete to what to him is abstract 
(Adler, 1966). Indeed, as Ausubel and Ausubel (1966) said, 

Even though an individual characteristically functions at the abstract 
level of cognitive development, when he is first introduced to a wholly 
unfamiliar subject field, he tends initially to function at a concrete-
intuitive level [p.407]. 

A similar point of view has been taken by Dienes (1966) in his postulation 
that the learning of abstract concepts can be thought of as occurring in cycles 
which can be regarded as microscopic copies of Piaget's developmental cycle -
that is to say, the concrete operations to formal operations cycle (at least) 
repeats at higher and higher levels of abstract learning. 

G6N6RAL wAyS OF KNUGlING 

A recurring theme through Lovell's (1971) excellent paper "Intellectual 
Growth and Understanding Mathematics" is the characterization of Piaget's work 
on intellectual development as describing the gradual development, in a person, 
of general mays of knoz~ing. General ways of knowing have to be actively con-
structed by the child through active interaction with his environment. Once a 
child's experiences make him aware, for example, of the relationship between a 
class and a sub-class, he never loses that idea in mental health. The quality of 
a child's general ways of knowing determines the manner in which, and the extent 
to which, he will be able to assimilate any particular knowledge he is exposed to 
in school settings. 

SK6MP'S R6EL6CTIV6 INT6LLIG6NCE 

Richard Skemp (1958), a psychologist at the University of Manchester, has 
stated that the chief ability required in mathematics at the secondary school 
level is the ability of the mind to become aware of and to manipulate its own 
concepts and operations, an ability he calls reflective intelligence. Reflective 
intelligence notions tie in very closely with characterizations of thinking at 
the formal operations stage. Skemp has devised tests to measure student abilities 
to reflectively manipulate concepts and operations. Consider, for instance, his 
operations test. In the first part of the test (SK6, Part I), the subject is 
required to operate on test figures using operations illustrated on a Demonstra-
tion Sheet by means of three examples. In the second part (SK6, Part II), the 
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subject is required to demonstrate "combining", "reversing", and "reversing and 
combining" operations on test figures. Since to do this test, the subject must 
have discovered what the ten basic operations in SK6, Part I, are, the operations 
are explained to the subjects after the administration of Part I but before Part 
II. There are five "combine ", five "reverse", and five "reverse and combine" 
items in SK6, Part II. Some sample operations and sample items from Skemp's op-
erations test are reproduced on the following page. 

Ina study involving 50 fifteen-and sixteen-year-olds, Skemp (1958) found 
an amazingly high correlation of 0.72 between the students' scores on this test 
and their scores on a general certificate of education mathematics examination 
(something like a C.E.E.B. mathematics examination at a younger age). 

In 1966, the writer administered Skemp's tests to two classes of students 
at each of the Grades V through XI levels (a total of 340 students). A plot of 
their mean scores on Skemp's reflective intelligence test (SK6(2)) by student age 
levels is made in Figure 1. Overlooking the fourteen-year-olds (.most of whom 
were frantically preparing to write external Grade IX examinations at the time 
tested and their mean scores were not statistically significantly lower than 
twelve-and thirteen-year-old means in any case) one could say that, in general, 
the SK6(2) mean scores increased with increasing age. Such evidence gives fur-
ther support to the notion of a gradual development with age of more sophisticated 
levels of thinking or "general ways of knowing". 

SK6: DEMONSTRATION SHEET (Sample Operations)* 

Operation B 
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Operation F I v  I + v + 
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%`Sample Operations and Sample Items from Skemp's SK6 test are reproduced from 
Harrison, 1967, pp. 312, 313, 319, 320. 
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SK6: PART II (Sample Items) 

In Part II, the problem is to combine the operations on the Demonstration 
Sheet, or to do them in reverse, or both. When combining operations, they are to 
be done in the order given (that is, "Combine C and G" means "Do Operation C first 
and then do Operation G."). 

Combine B & F / _...~ ~ ~ ~ 

Reverse F 

Figure 1 
THE RELATIONSHIP BETWEEN MEAN SK6(2) SCORE 

AND AGE LEVEL OF STUDENTS TESTED* 
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Mf1TH CONCEPTS STUDIES 

Lovell (1971) has gathered evidence from numerous research studies to sup-
port his contention "... that it is the development of ... general ways of knowing 
which determines the manner in which taught material is understood [p.10]." 

For instance, many studies with British and American pupils have 

... confirmed that apart from very able 12-year-olds, it is from the be-
ginning of junior high school onwards - the actual age depending on the 
ability of the pupil - that facility is acquired in handling metric pro-
portion [for example, constructing a rectangle similar to but larger 
-than a model]. Many pupils may not be able to do this until 14 to 15 
years of age and some never [Lovell, 1971, p.8]. 

For example, in one study cited by Lovell it has been found that it was not 
until she onset of formal operational thought, around 14 years of age, that the 
majority of British students tested "... were able to dissociate, completely, area 
and perimeter of square/rectangle, and realize that under certain changes area is 
conserved and not perimeter, while under other changes the reverse is true [Lunzer 
cited by Lovell, 1971, p.6]. 

Still another example has arisen from Reynold's investigation of "The 
Development of the Concept of Mathematical Proof in Abler Pupils", involving stu-
dents at the equivalent of our Grades VII, IX, and XII. This study showed that 
answers "... that were .characteristic of the concrete-operational stage of think-
ing appeared regularly, but the answers also indicated an increasing ability to 
use formal-operational thought with age [Lovell, 1971b, p.77]." 

FUNCTION STUDI6S 

Following up Piaget's earlier studies of the development of the concept 
of functions involving laws of variation, H.L. Thomas, at Columbia in 1969, ex-
plored the understandings of more general mathematical functions that had been 
attained by very capable Grade VII and VIII students studying Secondary School 
Mathematics Curriculum Improvement Study (SSMCIS) materials (average age: 13 
years; mean I.Q.: 125; very capable in mathematics). In the Grade VII SSMCIS 
materials, the concept of a function is introduced as a mapping of set A to set 
B, using the word "image" to refer to the object in B assigned to an element of A. 
The three essential elements of any mapping are described as .. a first set A 
whose members are assigned images, a second set B -from which the images are se-
lected, and a rule or process which assigns to each element of .the first set 
exactly one element of the second set [Thomas, 1969, pp. 25-26]." In the 
Grade VII SSMCIS materials, arrow diagrams, rules, ordered pairs, and graphs are 
used in treating mappings, composition of mappings, inverses, translations and 
dilations, all in the context of developing the concept of function. 

Thomas (1969) administered written function task tests to 201 Grade VII 
and VIII SSMCIS students and carried out detailed interviews with 20 selected 
students to assess their grasp of the notions about functions to which they had 
been exposed. Analyzing the responses, Thomas identified four stages in the 
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development of the concept of a function which will be described later. Of the 
201 written test subjects, 55 (27 percent) were rated as having attained an 
understanding of the function concept at the two highest stages, while 164 (82 
percent) could be said to have attained a minimal concept of function. Thomas' 
(1971) assessment of these results (even though the individual interviews were 
more encouraging; 13 out of 20 showed mastery of the basic concept of a function 
as a special relation) was that 

It was ... a shock to this investigator to find that, in a group of stu-
dents who had supposedly been carefully introduced to the concept of 
function, many could not distinguish functions from non-functions in 
simple and concrete situations. At the same time these students could 
carry out many of the processes associated with the function concept. 

One might speculate on this basis as to whether students should be a~-
lowed to work with the processes associated with function and only later 
learn to discriminate sharply those objects that are functions. This 
has, indeed, been a traditional route. Current thinking, however, runs 
counter to this approach [p.7]. 

Orton (1970), at the University of Leeds, carried out a cross-sectional 
study of the development of the concept of a function by individually interviewing 
72 subjects ranging in age from 12 to 17; eight boys and eight girls in the upper 
half of the ability range in mathematics from each of the forms equivalent to our 
Grades VIII through XI, and eight very select mathematics students from the equiv-
alent of our Grade XII. By Grade VIII these students had a background of sets, 
operations on sets, ordered pairs in various contexts, and graphs of ordered pairs. 
Beginning in Grade VIII, they were introduced to relations by means of arrow dia-
grams and mappings illustrating such relations as "is a brother of". Domain and 
range were defined and then a function was defined as a relation in which each 
member of the domain has only one image. Then graphing of functions was covered, 
followed by inverse functions and linear and non-linear functions (School Mathe-
matics Project, Book 2, 1966, pp. 153-170). In each successive grade, relations 
and functions were repeatedly worked with. 

Through tasks which. had to be completed, the students were required to 
recognize functions, distinguish between functions and relations, and pick out the 
domain, range, and set of images in a wide variety of situations in which the re-
lations considered were described by means of arrow diagrams, graphs, ordered 
pairs, tables and equations. A sample Orton function task employing an arrow 
diagram is reproduced on the following page. 

Based on Thomas' stages and the information from his own interviews, Orton 
described the following stages in the development of the concept of a function. 

STAGE I 

- concrete, intuitive 
- can handle processes when arithmetic, or in arrow diagram or table 
- concept of function as specific type of relation not mastered 
- limited extension of notions in ordered pair graphs 
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STAGE II 

- basic criterion for relation to be a function still not mastered 
- good grasp of relational aspects of function concept in that able to find images, 

pre-images, sets of images, and domain. 

SAMPLE ORTON FUNCTION TASK* 

1. Study this arrow diagram for a relation which maps 

{-3, -2, -1, 0, 1, 2, 3} into {O, 1, 2, 3, 4} 

(i) Write down each image of 2. 

(ii) Write down each number that has 2 as its image. 

(iii) Write down the domain for this relation. 

(iv) Write down the set if images. 

(v) Write down the range for this relation. 

(vi) Is this relation a function? 

STAGE III 

- can identify whether a relation is a function or not in several types of 
representation 

- mastery of basic concept of function 
- care not always taken to check uniqueness of images or correct domain for inve 

STAGE IV 

- mastery of basic concept of function to greater degree of generality than in 
Stage III 

- all representations of relations and their inverses classified as functions or 
not with precise analysis of the uniqueness criterion [Lovell, 1971a, pp. 17-' 

'Lovell, 1971a, pp. 25-26. 
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Figure 2 contains a summary of Orton's findings: 

Figure 2 
LEEDS STUDY (ORTON): % OF RESPONSES 

AT EACH STAGE BY GRADE* 

Stage 

Gr. 

8 

9 

10 

11 

(Select 
12 

Group) 

Under 
I I II III IV 

27% 25% 13% 11% 25% 

7

I 

15% 

II 

19% 

III 
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IV 

42% 
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II 
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9% 

IV 

51% 

I 

l 11%, 

II 

20% 

III 

16% 

IV 

52% 

'~ 
8~ 

III 

14% 

IV 

73% 

The percentage of responses at the various stages at each grade level 
certainly supports Orton's statement that "The growth of understanding of the 
concept of a function takes place slowly and over a long period of time [Orton, 
1970, p. 121]". At least this certainly seems to be the case in the age range 
sampled when the concept of a function is embodied in a fairly abstract, concise 
definition. 

Bernice Andersen, an M.Ed. student at the University of Calgary, replicated 
Grton's study with 72 Calgary junior high and senior high school students. Six 
bo;~s and six girls at each of the grade levels VII through XII with ability from 
average to above average were interviewed using Orton's tasks with minor modifi-
cations. Beginning in Grade VII, these students were given an intuitive back-
ground for the concept of function by working with sets, ordered pairs, and graph-
ical representations of ordered pairs. They were also given, in Grade VII only, 
a ve~•y brief intuitive introduction to the notion of a function without the term 
being mentioned in the context of a very limited number of examples of one-to-one 
and many-to-one mappings such as these: 

~~Lovell, 1971a, p. 19. 
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(9, 8) (7, 1) (1, 7) (6, 2) 

~ ~~~ 
98 8 

or 

17 

Functions, as such, did not come up again until they were formally defined 
in Grade XI after a unit on relations. In Grade XI the definition presented to 
students was: 

A function on a set A is a relation on A such that for every element of 
the domain there corresponds a unique element of the range [Beesack, 
1966, p. 67]. 

Since the Calgary students through Grade X had not been introduced to the 
terms "function", "relation", "domain", or "range", Orton's tasks were reworded in 
terms of "mapping", "set of ordered pairs", "set of first components", and "set of 
second components" as in the redraft of question 1, which follows. 

Figure 1 
SAMPLE MODIFIED ORTON FUNCTION TASK* 

1. Study the arrow diagram below. The arrows indicate a mapping of 

{-3, -2, -1, 0, 1, 2, 3} into {0, 1, 2, 3, 4} 

The mapping can be written as a set of ordered pairs. 

Refer to Figure 1 

(i) Write every ordered pair that has 2 as its first component. 

(ii) Write very ordered pair that has 2 as its second component. 

(iii) Tabulate the set of all first components. 

'Andersen, 1971, pp. 83-84. 
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(iv) Examine the set of second components illustrated by the arrow diagram. 
Tabulate the set of all second components that are paired with members of 
the other set. 

(v) Tabulate the set of all the numbers in Figure 1 that could have been used 
as second components. 

(vi) Is the set of ordered pairs indicated by Figure 2 a mapping? Discuss. 

Orton's interview procedures, scoring and assignment of responses to stages 
were closely followed in the Calgary study. Figure 3 summarizes the results. 

Figure 3 
CALGARY STUDY (ANDERSEN): % OF RESPONSES 

AT EACH STAGE BY GRADE* 

Gr. 
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',Andersen, 1971, p. 31. 
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Comparing the results of the Calgary study with those of the Leeds study, 
focussing on the percentages of responses at the Stage IV level, it appears that 
the Calgary students in Grades VII and VIII (who were not introduced to a formal 
definition of function at all, except in the context of the modified Orton tasks) 
were able to sort out the function notions in Orton's tasks just as well as the 
Leeds eighth graders who had been "taught" a formal definition of function. 
There is no marked increase in the percentage of Stage IV responses in the Calgary 
results until Grade XI, whereas the Leeds results show a gradual growth under 
repeated coverage of function properties coupled with the formal definition. It 
is in Grade XI in Calgary schools that the formal definition of a function has 
been given in the past, and, as can be seen, the percentages of Stage IV responses 
at the Grade XI level for Calgary and Leeds students are very similar. Keeping 
in mind that the twelfth-grade-equivalent Leeds students were a very select group 
of mathematics majors while the Calgary group was not, the Grade XII Calgary re-
sults also appear comparable to those of the Leeds study. In fact, statistical 
comparisons between the Calgary and Leeds mean function task scores across the 
grade levels showed no significant differences. Admittedly, comparisons such 
as the foregoing are fraught with all kinds of pitfalls, but considering that, as 
far as could be determined, the Calgary sample was certainly not more capable 
academically than the Leeds group, the patterns in the findings do seem to suggest 
that the three years of formal work with functions prior to Grade XI might not be 
time well spent. Perhaps a better use of the time would be to have students ex-
plore function ideas in very concrete contexts (such as those suggested later in 
this paper) building a firm intuitive foundation for the later formal definition. 

Many of Orton's Grade VIII students had not appreciated the basic defini-
tion of function and wanted to define function as a relation which produced a 
pattern when plotted as an ordered pair graph. Accordingly, he recommended that, 
if it is desired to use the modern definition of function, functions involving 
proportionality, which produce a particular kind of graphical pattern, should not 
be introduced too soon as pattern confuses the issue if it is mentioned before 
the basic definition of function is appreciated. (Interestingly enough, the 
Calgary Grade IX students study a section on graphs of formulas involving direct 
and inverse variation.) 

Orton also found that many students in all of the year groups (whose no-
tions of functions were in terms of one-to-one or many-to-one relations) confused 
many-to-one and one-to-many. 

Some students saw the above many-to-one relation as one-to-many because there was 
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only one arrow leaving each member of the domain, but many arriving at a single 
image. Because of this common confusion, Orton (1970) says that "it is better to 
attempt to define a function in terms of uniqueness of images of members of the 
domain, as, for example [in the routine way favored by some subjects], that in an 
arrow diagram, [of a function] only one arrow leaves each member of the domain 
[p. 140]." 

The Grade VIII and IX students were generally not able to interpret the 
graphical representations of relations with any confidence. Difficulties were 
frequently encountered in the finding of images for given pre-images and, vice-
versa, finding the domain and range, and converting the graph of a relation into 
an arrow diagram or set of ordered pairs. Orton (1970) hypothesized that ... 
in the early stages of the acquisition of the conept of a function, and the con-
cept of an (x,y) graph, a situation which involves both concepts is too difficult 
LP• 142]." 

In discussing tasks involving the differences between a relation and a 
function, Orton (1970) made the following comment: 

The unsatisfactory nature of responses, the number of subjects who 
thought there was no difference between a relation and a function, 
the number who thought there was no connection at all between a relation 
and a function [especially at the Grade VIII and IX level], must be 
considered, from a teaching point of view, to leave a great deal to be 
desired. If functions are to be appreciated through a study of sets 
and relations, and then at the end of such an introduction no clear 
idea of the connection between a relation and a function is held, then 
some of the point of the approach is lost [p. 142]. 

The main reason for this seemed to stem from the fact that the subtle 
distinction between "relation" and "relationship" was not appreciated by the 
younger subjects. 

Many excellent insightful further observations about the difficulties en-
countered by students in studying functions are included in the appendix of Orton's 
(1970) thesis and in Lovell's (1971a) description of Orton's study. Any teacher 
introducing or working with functions should at least read Lovell's description of 
Orton's study. 

The Grades X, XI, and XII students in Orton's study had been taught 
composition of functions, 

and they were interviewed further using tasks dealing 
with composition of functions and inverses. The tasks included f-notation, dis-
crete domains, and equations. The percentage distribution of responses by grade 
and stage is recorded in Figure 4. 
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Figure 4 

COMPOSITION OF FUNCTIONS 
DISTRIBUTION OF RESPONSES BY GRADE AND STAGE* 
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Orton (1970) interpreted the above findings in the following way: "It 
appears ... that the ideas associated with compositions of relations and functions 
and their inverses ... are not generally understood by other than the most able 
subjects in the [eleventh and twelfth years] [pp. 132-133]." This even after 
better than two years of working with functions. So, again, a gradual growth 
pattern is indicated when a new abstract concept is being learned. No matter how 
well a difficult concept is taught, we have to learn to allow for this gradual 
growing awareness in the student's mind about how everything fits together. 

SMP, BODKS A TU fl 

It is encouraging to note that an alternative version of the School 
Mathematics Project (SMP) series (namely, SMP Books A to H), aimed at a less se-
lect group than SMP Books 1 to 5 (which have an early formal approach to function 
much like that described in Orton's study), has been produced. In Grade VII in 
this new series, intuitive notions about relations are introduced, leading grad-
ually into first notions about mathematical relations. This is followed by graphs 
of relations mapping diagrams, arrow diagrams and inverse mappings in Grade VIII. 
As the teacher's guide notes, the words domain, codomain and range are purposely 
not used at this stage since many pupils find them confusing. A mapping is de-
scribed as ... a special kind of relation in which each member of the starting 
set is related to exactly one member of the finishing set [SMP, Book D, 1970, 
p. T230]." The authors have decided in the SMP A to H series to keep the mathe-
matical language as simple as possible; hence the use of the word function is 
avoided. There is apparently a very deliberate de-emphasis on verbal precision 
in the SMP A to H series. One cannot help feeling that the trend away from 
rigor toward more emphasis on preparatory, intuitive experiences at the junior 
high school is very healthy and certainly seems to be supported by the kinds of 
research summarized on the preceding pages. 

'Lovell, 1971a, p. 19. 
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MATHEMATICS CURRICULA 

The results of studies such as those to which we have referred have 
inescapable implications for designers of mathematics. curricula. As Beilin (1971) 
has pointed out: 

Mathematicians who choose to teach a sequence of mathematical concepts 
and functions on purely a priori bases may encounter great difficulty 
having these concepts learned. Logical relations are not inevitably 
paralleled by psychological relations. Unfortunately, little effort has 
been expended in testing the relations between the conceptual systems of 
mathematics and the cognitive system of the child except in the most 
limited of circumstances [p. 118]. 

Indeed, it has been an all-too-common tendency for textbook authors and 
teachers to try to "do the whole job" in teaching an abstract concept at first 
exposure, when the majority of the students are really not intellectually mature 
enough to effectively assimilate the ideas. 

Again, a warning from Beilin (which has also been given by Skemp and 
Lovell): "When the mathematical idea to be learned depends on a level of logical 
thought beyond that which the child possesses, the idea is either partially 
learned or learned with much difficulty and his grip on the idea is tenuous 
[Lovell (citing Beilin), 1971, p. 3]." 

The frustrating thing about students who don't really grasp the basic 
patterns and ideas in the mathematics they are taught is that they learn by rote 
enough of what they think we expect, enough to get by on an exam, say, but they 
do not build the intuitive insights and understandings necessary for progress to 
more and more abstract ideas. The frustrating thing about teachers, especially 
those with strong mathematics backgrounds, is that when they find that a student 
is confused, they explain the idea in increasingly tidier and more abstract terms, 
which the student is unable to assimilate. The teacher, having the concept firmly 
in mind, has difficulty imagining what it would be like to assess the situation 
without the benefit of the. concept. 

In Alberta schools we have had "first generation" modern mathematics 
textbooks in the junior high schools with "transitional" and, more recently, 
"second generation" modern mathematics textbooks in the senior high school 
programs. A somewhat incongruous result is that the treatment given a particular 
topic in the senior high school text is often less rigorous and much easier to 
understand than the treatment of the same topic in junior high. 

For example, a thorough coverage of exponents and radicals occurs in 
Grades VIII and IX and then re-occurs in Grade X with virtually no additional 
sophistication and a somewhat more straightforward approach. The Grade X teachers 
say they have to reteach the topic from scratch. Why? 

The writer was in a Grade IX class recently in which a girl, who had 
transferred in from another province, was having trouble deciding what to do to 
simpl ify 

4 ✓~ - 
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She was asked what kind of mathematics she had been studying in the other prov-
ince, to which she replied, "modern algebra". So, the writer said, "then you 
know how to simplify 4x - x." She wrote 3x immediately. Then the writer rewrote 

4 ✓ 2 - ✓ 2 under the above expression, but she saw no connection, she just shook 
her head and looked bewildered. 

DAVIS' APPROACH TO VARIABLES, RELATIONS AND FUNCTIONS 

Our Grade IX students would be better off if they had early experiences 

with placeholders and variables in the way Davis (1964) approaches them in the 

Madison Project materials -- not just 

2 x C~ = 5 

but all the interesting, fun things that can be done with placeholders and func-
tions, such as 

(a) Nora's Secrets 

Can you find the truth set for the open sentence: 

( ice x❑) - ( 5x ❑ ) +6=0? 

"Nora says she knows two secrets about this kind of equation. Do you 
know what she means [Davis, 1967, p. 112]?" 

(b) Guessing Functions 

Davis has successfully led Grade V children to develop "finite differ-
ences" strategies for coming up with rules that would generate the fol-
lowing tables of values. The "differences" are shown and the rules so 
discovered are written below the tables. 

0 

1 

2 

3 

4 

2 

5) 3 

) 3 
8 
) 3 
11 

3 
14 

0 

1 

2 

3 

4 

3 
) 1 
4 ) 2 

~ 
3) 

2 

125) 2 
)7 
19 

Not only do children exposed to Madison Project materials come up with 
rules for tables of values of linear, quadratic and exponential functions, but 
they also derive rules for the patterns they see in graphical representation of 
these functions and explore all of the very interesting relationships and patterns 
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that exist in the various modes in which functions can be represented - for exam-
ple, a rule (or formula), table of values (or tabulation of ordered pairs), or 
graph. Sigurdson and Johnston (1968, 1970) provide an excellent application of 
this kind of approach at the Grade X2 level. 

(c) Madison Project "Independent Exploration Material" (often referred 
to as Davis''~hoeboxes"). These shoeboxes contain materials and 
instruction cards designed to produce data for graphs and "function 
guessing". 

(d) Approaching functions with Cuisenaire Rods as in Davis' "Centimeter 
Blocks" shoebox and in the ways described by Gail Lowe (1972) (e.g., 
using the white rod as a stamp to cover: individual rods, rods 
placed end-to-end ("trains"), rods placed side-by-side, side-by-
side and staggered,."pyramids", etc.). 

The preceding are only a very small sample of the rich sources of ideas 
and materials for enabling children to explore concepts like functional relation-
ships in a very concrete and interesting way (an excellent annotated compilation 
of manipulative materials currently available can be found in Fabric of Mathematics'
Laycock and Watson, 1972). 

Although this paper has focused on functions, similar cases could be 
made for the development of concepts such as mathematical proof (Sample Research: 
Reynolds, 1967; Lovell, 1971b; Sample Approaches: Davis, 1967), and proportionality 
and probability (Lovell, 1971c). 

SUMMARY 

One interpretation of the presently available evidence from classroom 
research conducted along Piagetian lines is that, at least until the end of junior 
high school for most students (and even longer for some), the main focus in pre-
senting mathematics in schools should be on providing rich concrete experiences as 
a foundation for meaningful formalizations in the high school years. Children 
can certainly begin working with functions, for example, in elementary school but 
in a very concrete context, and they should have frequent access to concrete em-
bodiments of functional relationships until each child himself is ready to progress 
to a formalized, generalized, abstract conception of what principles are embodied 
in the many related concrete experiences he has had. 

If the reader has any doubt as to what can be accomplished under a stu-
dent-oriented, active-learning approach, Davis' Experimental course report: Grade 
nine (Davis, 1964a) would make very interesting reading indeed. 
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