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INTRODUCTT~N 

Transformations have played a very important part in our thinking over the 
past five years. Thinking about transformations has opened to us some of the true 
fascinations of mathematics and has showed us new directions for the development 
of student materials starting with five-year-old children. I am not alone in my 
enthusiam for this approach. My great teacher, Dr. Coxeter, perhaps the world's 
greatest living geometer, states the following: 

It is difficult to overestimate the importance of the 
notion of mapping in mathematics. In calculus it ap-
pears centrally in the concept of a function. In al-
gebra we speak of a correspondence. In geometry we 
generally use the word transformation. Through the 
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concept of transformations we are able to character-
ize the geometry we are studying. It leads us, in 
fact, to a satisfactory answer to the question, 
"What is Geometry?" [unpublished manuscript] 

I would like to go farther and say that transformations can lead a student 
to answer the question, "what is mathematics?" 

It has been clearly established that transformations are a vehicle for 
developing geometry. At an international conference on pre-college geometry held 
in southern Illinois, some of the world's foremost geometers spoke strongly in 
favor of transformations. Britain and many other European countries are now pro-
ducing mathematical materials which rely on the idea of a mapping. In our work in 
Canada, we have found that the mapping idea has opened up new approaches to school 
mathematics. These approaches are proving both enjoyable and fascinating for 
teachers and children alike. I will try to outline briefly what has happened in 
the past few years. 

TRANSFORMATIONS IN SCHOOL MATHEMATICS 

The most significant change in elementary mathematics is occurring through 
the introduction of transformations (Del Grande, 1972). Geoboards and colored elas-
tics are used at a very early age, and children learn about shape and transforma-
tions through them. Special materials such as dot paper and plexiglass mirrors 
enable children to work with mathematical problems never before attempted. 

Here are a few sample problems that children can try experimentally on 
the geoboard and then analyze. 

- On a nine-nail geoboard, how many segments can you make the same size as the 
one given? 

- How many triangles, the same size and shape, can you make? 

0 o Q 
From exercises such as those, children learn to talk about congruent 

figures they have made and describe how to move one figure onto another. These 
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motions called slides, flips and turns form the basis for transformations in 
geometry. 

Children act out slides, flips and turns -with body motions. They move 
paper cutouts around a plane to illustrate the motions (Del Grande, 1972). They 
soon learn that pleasing patterns can be made by drawing the outline of a figure 
as it is moved according to a rule. 

Reflection is first illustrated by using paper folding and flipping a 
figure about an edge. With the introduction-of the semi-transparent mirror, 
actual mirror images can be drawn with ease. This special mirror has many appli-
cations to geometry and geometric constructions in later grades. 

Our junior high program relies heavily on the idea of a mapping. The 
program starts with arrow diagrams fist introduced by those brillant mathematics 
educators Georges Papy-(1968) and his wife Frederique Papy (1971). Through these 
diagrams the student learns to pair things with things, number with number, and 
points with points. 

If A is related to ~, then A is joined to B with an arrow. 

The following arrow graph or Papygram illustrates an interesting way in 
which Papy's approach can be used (Del Grande, Jones, Lowe and Morrow, 1971-72). 

Draw an arrow diagram of the relation is a factor of in {1, 2, 3, 4, 5, 6, 
15, 500}. (Since 2 is a factor of 4, we join 2_to 4, with an arrow, etc.) 

IS A FACTOR OF 
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Notice that since 1 divides every whole number, 1 is joined to every other 
point. 

Why is there a loop at every point? 

What kind of arrow diagram results if we have only prime numbers? 

It is easy to design Papygram questions that involve drill and practice, 
and children really enjoy it. 

In pairing number with number, the student discovers pairing rules such as 
n -~ n + 3, x -~ 2x - 5. These pairings lead to graphing of the pairs of numbers 
with emphasis on those pairings that give a linear graph. Pairing of numbers have 
led us to introduce flow charts. For example 

n -~ 2n - 3, n ~ {-5, -4, -3, -2, -1 , 0, 1 , 2, 3, 4, 5} 

Flow charts are used for evaluating alge-

braic expressions and result in consider-

able practice in computation. By pairing 

the "input" with the "output" we obtain 

ordered pairs that can be represented in 

a graph. These flow charts are like 

"function machines". 

Flow charts require an understanding of "order of operations" and lead to 

the solving of linear questions in one variable. For example, to solve 2x - 3 =7 
2 

the student produces the following flow chart and reverses the steps to solve for 

x. 
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Teachers in France are solving linear equations with Grade IV children 

using arrow diagrams and the renaming of numbers. 

If 2x + 3 = 19, then 2x + 3 and 19 name the same number. 

2x + 3 

19 

Find new numbers 

2x+3} 

19 -~ 

+ 2 

+2 

that have two names 

-~ 2x+5 

} 21 

Find a number whose name is also x. 

2 x+ 3 -~ -3 -~ 2 x -~ 2 -~ x 
> • • > • 

19 -~ -3 -~ 16 ~ r 2 l -~ 8 

Thus, x = 8 is a solution of the equation 2x + 3 = 19. 
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Papygrams lead naturally into the study of transformations through the 
pairing of points. A translation can be described using one point and its image, 
a reflection by the "mirror" line and a rotation by the center of rotation and 
the angle of rotation (Del Grande, Jones, Lowe and Morrow, 1971-72). 

• • • • 
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Dilatations and size transformations are studied and considerable work 
with similar figures, scale drawings and ratio is done (Coxford and Usiskin, 1971, 
Del Grande, Jones, Lowe and Morrow, 1971-72). The following diagram shows that 
HUGE is the image of TINY under a size transformation with center and scale fac-
tor 3:1. 

f 

.~ 

.' ,~_ 

1 .' 
.' G 

P ~= Y E 

Papygrams describe in a most unusal way some of the geometrical transfor-
mations (Del Grande, Jones, Lowe and MorroH!, 1971). For example, given a square 
ABCD, which transformation does each Papygram describe? 

A   B 

D C 
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By applying the transformations of translation, reflection, rotation and 
glide reflection to geometric figures, children learn two important things: 

(1) the properties of geometric figures, 
(2) the properties of the transformations. (See Coxford and Usiskin, 

1971, and Del Grande, Jones, Lowe and Morrow, 1971-72.) 

The properties of geometric figures include the 
- properties of isosceles triangles 
- angle sum of a triangle 
- properties of parallel lines 
- properties of quadrilaterals. 
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After activities involving quadrilaterals and transformations, Grade VIII 

children can fill in charts such as the one below. 

Parallelogram Rectangle Rhombus Square 

a. The diagonals bisect each other, yes 

b. The diagonals cross each other at 90~. yes 

c. All sides are congruent. 

d. All angles are congruent. yes 

e. Opposite angles are congruent. 

f. Opposite sides are congruent. 

g. Opposite sides are parallel. 

4Jith this background of transformations and figure properties, it is an 
easy matter to prove the three congruency theorems side-side-side, side-angle-
side, and angle-side-angle by s-howing that one triangle is the image of the other 
after a comb ination of translations, reflections or rotations. Thus, one can 
readily see that deductive geometry, in the traditional sense, can be attacked 
using the traditional tools along with the powerful yet natural weapons of 
transformations. 

Dieudonne shocked the mathematical world when he said in his address at 
Cercle Culturel de Rogaumount in 1959,"Euclid must go". This modern approach to 
Euclid is what he wanted. His pleas have not gone unheard. We've accomplished 
what he predicted should happen; and it happened through transformations. 

Transformations were never taught to young children in the past, nor were 
they usually outside the context of geometry. The study of the symmetries of a 
figure lead to the study of groups and all the fascinating aspects of strip pat-
terns and wallpaper. designs (Sudden, 1972, Weyl, 1952). The following strip 
patterns are "generated" from a -basic figure using transformations. 

j • ~ ~ • 
1`~~~ 
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The following diagrams illustrate instructions which will generate two 
ofi the many possible wallpaper patterns. 

~~■ ~~ a~~• a~► ir, 
:~~ t1 

slid slid 

c~ 

slid 

slid slid 

turns as indicated 

s,~~~~r 
p f l p !~~ I~ 

~~ fli ~%~ ~rruuv 

fl p 

fli 

fl 

fli • 

Symmetry leads to crystallography and nuclear structures. In fact, an 
excellent introduction to transformations is found in the book sz~mmetrr~: a 

~.~o~;copic Guide for Chemists (Bernal, Hamilton and Rice, 1972). A few pictures 
from this interestjng book fellow. 

m=: z. y —~ x. -y 

Y. y --~ - x. -y 

77 



The work of the graphic artist~`M.C. Escher is primarily based on. trans-
formations. His pictures are 'famous and de.l,ight children of junior high school 

age who try to imitate hi"s rules but~with different designs. 

The study of the linear and quadratic functions can be made dynamic and 
meaningful through transformations (Del Grande, Duff and Egsgard, 1970). For 
example, a parabola with equation y = ax2 + bx + c -can be obtained from the 
parabola y = x2 by a stretch and a translation. It is no great problem to devel-

op a series of exercises through which a student can discover this fact for him-
self. 

Y Y = x2

0 

Y 

- 'x 

(0,1) 

Y = ,z x2 + I 
0 x 

Y 

i 

(-2,1) 
• y = ~(x + 2)2 + I 

0 x 

Functions and their inverses are shown to be mirror images of one another 
in the line y = x. The logarithmic function is defined as the inverse of a cor-
responding exponentia function. -The graphs of these two°functions are shown 
below and are mirror- images of each other .i~n `the line y -' x. 
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The following gives a set of rules for relating functions to their graphs 
through transformations. 
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TRANSfURMATIONS AND CURVE TRACING 

f is a function with defining equation y f(x). 

uraph of f is symmetric about the y axis. 

f(a) ~ f(-a) (x,Y) ~ (-x,Y) 

~rapi~ of f is symmetric about the origin. 

f(a) = -f(-a) (x,y) ~ (-x,-y) 

The function of 

If a = -1, the graph of of is the mirror image of the graph 
of f in the x axis. 

If a > 1, the graph of of is a "vertical stretch"of the 
graph of f. 

If 0 a < 1, the graph of of is a "vertical compression" of 
the graph of f. 

If a < 0, the graph of of is the mirror image of the graph 
of ~a~f in the x axis. 

The function f-1 (x,y) ~ (y,x) 
1 

The graph of f~ is the mirror image of the graph of f 
in the line y = x. 

1"he graph of h is congruent to the graph of f. 
If a > 0, the graph of h is a units to the left of the 
graph of f. 

If a < 0, the graph of h is a units to the right of the 
graph of f. 

h:x ~ f(x) + a (x,Y) ~ (x,Y + a) 
The graph of h is congruent to the graph of f and f is 
translated a units parallel to the y axis. 

h:x ~ flax) (x,Y) ~ (1 x,Y) 
a 

If a > 1, the graph of h is a "horizontal compression" 
of the graph of f. 
If 0 a < 1, the graph of h is a "horizontal stretch" 
of the graph of f. 
If a < 0, the graph of h is the mirror image of the graph 
pf k:x ; f (~a~x) in the y axis. 
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h:x~f(ax+b), a> 1, b> 0 

• ~:r~ ~ ; 

The graph of h is a "horizontal compression" o.f the graph:, 

of f and 
a units to the left 

of the graph of k:x ~ f(ax). 

Discuss the cases a > 1, b < 0 

0<a< 1' , b>0 

0 < a < 1 , '.b. < -0

a<O, b>0 

a<0, b<0 

Although trigonometry can be approached using similar triangles and ra-
tios in the early .years., the trigonometric functions can be ini;roduced in a 
meaningful way usi gig a -mapping. ~ " 

;~ , ~. 
The trigonometric ratios are first defined using a`righ-angled triangle 

for 0° < x < 90°

a 

sin e = 
a 
c 

c o r e= b 
c 

tans= ab 

The definition may then _be extended to. angles of any_ measure. by using the. 
analytic approach ' 

OP=r 

-sine = ~ 

cose= x
r 

tans=X 

During these early years, we should develop some basic ideas ,for periodic func-
tions through problems 's.uch as the following from Del Gwaride ~ buff `and Egsgard 
(1970) and Del Grande and Egsgard (1972). 
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Y 

~ x 

p 

Two pegs are placed at A and Q. 

- Wrap a string around the pegs 
as shown. 

- Each point on the string maps 
onto a point (x,y) on the plane. 

Relate the length of string u 
to x and then u to y. 

- Graph the functions ~, -* x and a, -~ 

u 0 1 2 ... 10 11 12 ... 20 21 ... 

x 0 1 2 ... 10 9 8 ... 0 1 ... 

0 I 

v 0 0 0 . . . 0 0 

Y } 

y• 

The first graph allows us to study periodicity and amplitudes. Phase 
shift can easily be shown by using the same pegs but starting the string at some 

point between A and B. For example, if we start at C, the midpoint of A~, we ge 

~, I 0 1 2 ,, a 6 7 10 ... 15 .., 20 

;; I 5 6 ~ ..10 9 8 5 . . . 0 . . . 5 ~ ~---• 
A C d 

(5.0) 
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This new graph is a shift copy of the first with-the exception of the 
starting portion. These graphs can be extended to the left by winding the string 
in the opposite direction and using negative values for ~. Periodicity amplitude 
and phase shift should be studied long before the graphs of the trigonometric 
functions are introduced. 

The next exercise might involve the winding of a string about a square. 

The graph of Q ~ x is as follows. 

x 

~o 

10 20 30 40 50 70 YO 

Finally, a string is wound around a unit circle and the familiar trigono-
metric functions emerge. 
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The change in symbols from (x,y) to (u,v) is necessary to arrive at the 
equations we desire, namely y = sin x and y = cos x. Notice that x is the length 
of string and is a real number. 

Graphs of functions such as y = a sin (bx + c) can now be related to 
transformation. The graph is a sine curve with amplitude a, frequency 2~and 

~~ phase shift - ~. 

Transformations enable us to approach the conic sections in a very inter-
esting way (Del Grande and Egsgard, 1972). Starting with a circle with equation 

x2 + y2 = 25, a one-way stretch (x,y) ~ (x, ~ y) is applied. The resulting curve is 

9x2 + 25y2 225. 
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To show that the image curve is an ellipse, we define an ellipse using 
the constant sum of the focal radii. 

X 

By selecting suitable foci and a suitable sum we obtain the ellipse 9x2 + 25y2 = 
225. 

Thus, we show the image curve is in fact an ellipse. 

These results can be generalized using the circle x2 + y2 a2

and the one way stretch (x,y) ~ (x, b y). To obtain an ellipse with foci on the 
a 

y axis, we apply the stretch (x,y) ~ (ax, y). 

Having stated that the graph of a quadratic function is a parabola (Del 
Grande, Duff and Egsgard, 1970), we show that parabolas have image parabolas un-
der stretches. To show how to obtain a parabola from an ellipse, we start 
with the ellipse 

b2X2 + a2y2 = d2b2

The ellipse is translated so that (-a,0) moves to the origin. We employ a special 
transformation that holds the vertex at (0,0) and the nearer focus fixed while the 
other focus moves to infinity along the positive x axis (Del Grande and Egsgard, 
1972). 
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The final result is parabola! 

For the hyperbola, we start be stating that xy = 1 is a hyperbola. This 
is easy to graph and the asymptotic properties of the hyperbola are apparent. 

By a 45° rotation clockwise about the origin we obtain the image hyperbola 

x2 - y2 = 2. A two-way stretch, (x,y) -~( ~2 x, ~2y), of the image gives the 
hyperbola ~ - y~ = 1 where the asymptotes are now x + ,~ = 0 and x - ,~ = p, 

a b a b a b 
which are the final images of the x and y axes. 

It is interesting that starting with an hyperbola and holding one of its 
foci fixed, a suitable "stretch" will give an image that is a parabola. Thus the 
intuitive notion is established that when an ellipse is "stretched to infinity" 
it becomes a parabola, and when "stretched beyond infinity" it becomes an 
hyperbola. 
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Transformation gives us an excellent opportunity to introduce and apply 
matrices (Coxford and Usiskin, 1971). A 2 x 2 matrix can be used as an operator 
on the vertices of a figure to give the coordinates of the image points. 
Coordinates of points are written as a matrix 

(0,1) 

(1, 0 ) 

If (1,0) -~ (x,y) 

(0,1) ; (u,v) 

under a transformation, then 

the matrix operator is (x 
u) 

y~ 

The matrix operator for reflection in the x axis is obtained as follows: 

(1,0) ~ (1,0) 
1 0 
(0-1)

To find the image of oABC under a reflection in the x axis, where A(1,1), 
B(2,3) and C(-1,3), we perform a matrix multiplication as follows 

1 0 1 2 1 _ 1 2 1 
(0 -1) (1 3 3) -(-1 -3 -3)

r T T 
operator coordi- coordinates 

Hates of of image 
A,B,C points 

The matrix operator fora rotation of an angle e about (0,0) is obtained 
in the same way. 

(0,1) 
(1,0) } (Cos e, Sin e) 

.~ % (Cos A, Cin e) (0,) ~ (-Sin e, Cos s) 

. ~ ~~ A 
R = (Cos e -Sin e )

(1,0) e Sin e Cos e 

Composition of transformation is obtained by multiplying matrix operators 
To illustrate, we use successive rotations of e and ~ 

Cos(e + al) -Sin(e +oC) Cos e -Sin e Coso~ -Sin ~ 
(Sin(e Gc) Cos(e +d,) ) _ Sin e Cos e ) (Sinn{ Coso~ ) 

(Cos e CosoC - Sin e Since)
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By comparing the two matrices we get the familiar result 
Cos ( e +d~) = Cos o CosoC - Sine Si na 

Can you complete the matrix equation to show that 
Sin (e +d) =Sine Coso~+ Cos e Sinop? 

Throughout the work on transformations, symmetry appears time and again 
in most unusual ways. We use an example from calculus to illustrate. 

To find ~~ Sin2x dx we notice that the areas under the curves of 

y = Sin2x and y =cos2x in the interval 0 to n are reflection images of each other. 

Y 

~~~ x 

Y 

%i x 
0 n 0 II

n 

2 

n n 

2 

2sin2x dx = z 2sin2x dx + 2cos2x dx 

0 0 0 

Sin2x + cos2x) dx 

n 
4 
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A second and interesting example from calculus shows the power and 
simplicity of transformations (Del Grande and Duff, 1972). 

It is easily shown that the transformation 

b 

preserves area. For example, 

the circle has an ellipse as image but the areas are the same! 

Under this two-way stretch (x,y) -~ (bx,y) the curve y = 1 
b x 

maps onto itself. If the area in the interval 1 < x < a under the curve 

y = 1 is defined as Qn a 
X 

I a 

we can show that 

Qnab=Qna+Qnb 

which is an important property of a logarithm. 

By using areas, the result that 

d In x = 1 follows. 
d x x 

Results such as these indicate that we can make mathematics more meaning-
ful to our students to whom we have been entrusted to reveal the beauty, sense 
and fascination of mathematics. 
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CONCLUSION 

The use of transformations produces a great quantity of mathematics suit-
able for young children and leads to a set of axioms in geometry on which a 
logical structure can be built. Transformations lead naturally into the ideas 
of relations, mappings and functions, especially for composition and inverses. 
Transformations clarify the addition of vectors, help to motivate matrix multipli-
cation, provide better proofs of results in trigonometry, and make the study of 
curve tracing or graphical representation of functions both dynamic and lucid. 
Transformations is one of the main themes and is a unifying force throughout the 
whole of school mathematics. 
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