Part III

Scope and Sequence

Abstract

This article has been reprinted from Think MetricA Workshop on the Metric System of Measurement, a publication of the Alberta Department of Education

Sidney A. Lindstedt
Government of Alberta

As the strand of metric measurement is developed into the mathematics program, teachers should have in mind a scope and sequence format upon which to build their activities, projects and exercises. There are, of course, many ways to formulate a scope and sequence organization and there are many variables, such as the nature of the class, the general organization of the whole school program. The following chart is one suggestion intended to serve as a referent for discussion on this topic. It is not a "prescribed" course of study.

It is fairly easy to have a consensus on what the overall content should be in the elementary school, that is, the content up to the end of Grade VI. In general, it should include the common units of length, area, volume, capacity, mass, temperature, and money. In addition to the commonly used units, it should include, for cognitive reasons, one complete example of a system of subunits from the milli- units to the kilo- units in order to have a complete understanding of the decimal structure of the metric system.

There are many ways to accomplish this overall result. For example, we could sequence the linear units from the smallest (millimetre) to the largest (kilometre). This would be a rational, logical sequence, but a millimetre is a very tiny unit to begin with so the sequence is probably not psychologically sound. Therefore, some decision must be made whether to begin with a centimetre or with a metre.

Another example is the question of when to introduce decimal notation. There are several possibilities. We could continue to call the length of this page 2 dm and 8 cm , or 28 cm , for an extended period of time (two or three years) without difficulty, or we could introduce the notation of 2.8 dm as another way of expressing the distance.

In the following chart no attempt has been made to designate the vertical sequence into "grades" by putting in horizontal divisions. "Continuous progress" and/or "individualized" programs suggest that such a designation would be inappropriate. However, consideration has been given to the horizontal articulation of various concepts from one measurement attribute to another, e.g. millimetre, millilitre and milligrams are included at the same horizontal level.
the measurement strand in elementary mathematics

$$
\overline{3 d 0 כ \mathrm{~S}}
$$

1. Activities that involve making comparisons - long, short; thick, thin; tall, taller; heavy, light; warm, warmer; big, small; etc.
2. Ordering a set of objects by some measure attribute, especially by length. 3. Use of non-standard units.
$\left.\begin{array}{l}\text { 1. Meaning } \\ \text { (a) Use of } \\ \text { non-standard } \\ \text { units } \\ \text { (b) "Counting" } \\ \text { units of } \\ \text { area }\end{array}\right\}$ 2. Standard unit -

เ

6. Standard unit -

Measuring to precision
of nearer millimetre

Standard units - (hm)
The hectametre (hm)
The decametre (dam)
'splait butunseaW

$$
\begin{aligned}
& \text { Using linear units to show } \\
& \text { metric system from "milli-" } \\
& \text { to "kilo-" } \\
& \text { (a) Decimalization }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) Conversion of units by } \\
& \text { shifting decimal point } \\
& \text { (c) Consideration of "ragged }
\end{aligned}
$$

$$
\begin{aligned}
& \text { shifting decimal point } \\
& \text { (c) Consideration of "ragged } \\
& \text { decimals" }
\end{aligned}
$$

(d) Precision
n
∞

