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Editor's Comments
by

Sid Rachlin
The University of Calgary

The development of the ability to solve problems has long been recognized
as one of the major goals of mathematics education. With the recommendation
by the National Council of Teachers of Mathematics (NCTM) that "Problem
Solving Must be the Focus of School Mathematics in the 1980's," the goal of
teaching problem solving in the mathematics classroom has taken on the fervor
of a campaign slogan. §Still, there is only one group of people capable of
attaining this goal: the classroom teachers.

Interest in problem solving is not new to Alberta's educators. Perhaps
the finest work on the teaching of problem solving in the early childhood
years was published by Doyal Nelson and Joan Kirkpatrick Worth of the
Universgity of Alberta in the 37th Yearbook of the NCIN. Long before the
problem~solving bandwagon began to roll, Alberta Education noted in 1its 1977
Curriculum Guide for Elementary Mathematics that problem solving was a
"unifying theme which permeates all the strands of the elementary school
mathematics program." Representative of the new impetus for the teaching of
problem solving are the changes suggested in the 198l revision of Alberta
Education's Curriculum Guide for Elementary Mathematics. The revised
curriculum guide includes the learning of problem-sclving skills as a separate
strand. The authors of the guide are quick to point out that the inclusion of
a problem-solving strand "is not intended to portray problem solving as a
topic unto itself.'" Rather than a change in the curriculum, the inclusion of
the problem-solving strand represents an effort to make teachers more aware of
how they might teach for the development of problem-solving abilities. In

Problem Solving Be The Focus in the 1980's. 1In addition to a scope and
sequence chart of problem-solving skills for elementary mathematics
categorized by Polya's four phases for solving problems (understanding the
problem, devising a plan, carrying out the plan, and looking back), the manual
provides an array of suitable problems for students of varying developmental
abilities.
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This edition of the Math Monograph provides teachers with a wide range of
articles on the teaching of problem solving in the mathematics classroom. The
monograph is separated into four sections: Understanding the Preblem,
Devising a Plan, Carrying Out the Plan, and looking Back. The first section
includes articles which provide a sense of the "problem'" of teaching for
problem solving: What is given? What is our goal? 1In general terms, how
might the goal be attained? The second section provides suggested plans for
attacking related classes of problems. The articles in part three focus on
the golution to specific problems. Finally, the last section includes
articles which reflect on the past, present, and future of teaching for
problem solving. At times the placement of an article into a section was
arbitrary: 1i.e., several articles could be placed comfortably within any ome
of the sections.

This monograph presents the thoughts of a diverse group of authors,
representing seventeen states and provinces. Despite the diversity, two
common threads run through the articles. The first is a common notion for the
meaning of the word "problem.” A problem is defined as a “"task™ which an
individual attempts to resolve, given that this resolution is within the
person's ability and it is not resolved by the person's immediate application
of some algorithm. Resolution of the task is taken as the individual's
belief, stated or implied, that he has obtained the "actual" solution.
Whether or not a task is a problem is dependent on the characteristics of the
individual and his attempted paths to resolution. The second common thread
woven in the articles is the belief that the actions of the teachers can
affect the development of their students' agbilities to solve problems.

The articles included in this monograph have been specifically written
for this audience. They are not reprinted from other publicatigns. Several
people are responsible for the selection and editing of the articles for the
" monograph. 1In the spring of 1980 over 40 letters soliciting submissions for
possible inclusion in the monograph were sent to individuals speaking on the
teaching of problem solving at meetings of the National Council of Teachers of
Mathematics in Calgary, Regina and Seattle. Letters were also sent to
appropriate speakers at the Vancouver meeting of the Research Council on
Diagnostic and Prescriptive Mathematics. Under the guidance of Lyle Pagnucco
and Rich King, at least four teachers reviewed each submission. Articles were
accepted based on the recommendations of the reviewers and edited to avoid
redundancy and to ensure that the examples provided were phrased appropriately
for the intended audience. Later the articles were re-edited in an attempt to
provide the greatest possible amount of information in a limited amount of
space. For example, only those bibliographic entries specifically referred to
in an article were included with the list of references at the end of each
article. Readers interested in detailed bibliographies of mathematical
problem solving are directed to Sarah Mason's annotated bibliography in the
1980 Yearbook of the NCTM and Frank Lester's chapter on problem-solving
regsearch in NCTM's Research in Mathematics Education.

Finally, it is with sincere appreciation that I acknowledge the skillful
and dedicated efforts of Judy McDonald. It is through her technical skill
that you are now able to share this edition of the MATH Monograph with your
fellow teachers.
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Problem Solving: Some Means and Ends

by

C. Edwin McClintock
Florida International University

Problem solving is a form of mental activity that is characteristically
creative and requiring of ingenuity in conception or reflection. Problem
solving goals in school mathematics are both the most important ends of the
mathematics curriculum and means to the ends of concept development and skill
development as well.

A problem is a difficulty that has some novel aspect; there is no readily
available solution so the creativity of the problem solver is called upon to
produce a solution or to resolve a difficulty. The presentation of problems
in a mathematics classroom has potential of motivating and exciting reluctant
learners. The sense of novelty and the challenge of a difficulty that summons
forth ingenulty set a positive tone for a classroom. In essence, students can
feel that their minds are being developed, that the initiator of the
problem-solving activity values their ingenuity!

Why, then, do students rebel at problem solving? Could it be that what
appears in problem-solving sections of textbooks is another form of skill
rather than problem solving? Examining the discussion of textbooks suggests
that this 1s exactly the case. The prescribed rules preceding a "problem-
solving” section tend to indicate a lock-step, algorithmic approach that is
antithetical to the goals of problem solving. As Polya (1957, 1962, 1965)
describes the "one rule under the nose" sequencing of school mathematics
(including current textbook "problem solving" sections) the creativity and
ingenuity requirements are not present; the element of novelty in problems and
a sense of reality of content and context of problems are alsoc missing.

SYSTEM FOR DEVELOPING PROBLEM-SOLVING ABILITY

Problem solving is a vital factor in the growth and development of
mathematical knowledge and know-how. As such it requires systematic effort
and total integration into the mathematics curriculum at all levels. The very
concept of mathematics, the view of what the subject is and of what a
mathematician does is more accurately portrayed with problem solving than with
any other mathematical activity. It is the heart of mathematics and should,
likewise, be at the heart of the mathematics curriculum. The thought patterns



that can be learned by observation, experience and participation in
problem~solving activity are, at the least, as valuable throughout life as are
the "basic skills" of arithmetic. Furthermore, these thought patterns
strengthen skills and conceptual understanding, thereby producing mental
structure and organization that aid retention and generality of these sgkills
and concepts.

These patterns of thought break the dependence and "show me how first" .
attitude in students and replace it with more confidence and independence.
Granted, systematic, long-term instruction and experience in problem solving
are necessary to move a student to thils independence and confidence in "
mathematical thought. Furthermore, concurrent develaopment of content cannot
be neglected. It is as Kantowski (1980) suggests that planned instruction and
experience over a long period of time are necessary for the development of
problem-solving ability. Such problem-solving instruction and experience are
necessary, nevertheless, for students to move from the point of '"follawing"
what is shown te them and being reproducers to a more productive, creative use
of mathematics.

PROCESSES THAT AID CONCEPT DEVELCPMENT

There are a number of problem-solving processes that can aid in concept
development. For example, "reformulation" is a heuristic process that
recognizes the "novel" characteristic of a problem and suggests acting upon
this characteristic. Consider the following problem:

What is the least number that leaves a remainder of 3 when divided
by 5, a remainder of 2 when divided by 4, a remainder of 1 when
divided by 3, and a remainder of O when divided by 2?

A reformulation of the problem is as follows:

What is the least number that is 2 less than a multiple of 5, 2 less
than a multiple of 4, 2 less than a multiple of 3, and “2 less" than
a multiple of 27

Frequently, the feature that makes a problem interesting is the fact that
the concept must be "thought of” in an unusual way such as remainder in
division being considered as excess or deficiency in multiplication (or visa
versa). This strengthening of the ties between pairs of '"opposite operations"
provides a greater intuition for the structure of mathematics. Both the
concept of least common multiple and the deep mathematical relationship of
opposite operations give new perspectives to those who attempt problems like
that above, particularly if approached in the problem-solving spirit. -

"Working backward" is another powerful problem-solving process {(a
‘heuristic) that also can enhance concept amnd —skill—development. —€onsider-the- - -- - -»
problem:

A San Francisco streetcar turns curves at the bottow of hills very

rapidly. Thus a driver must take care in making the turns. One day
a careless driver turned the first of two curves so rapidly that he
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"threw off" 1/2 of the passengers plus half a passenger and at the
second sharp downhill curve "threw off" 1/2 of the remaining
passengers plus half a passenger. Despite all of this, all
passengers remained "whole" (except for a few minor scrapes and
bruises) and the number of passengers who remained aboard the
streetcar at the end of the ride was 20. How many started this
treacherous streetcar ride?

Again, working through the solution of this problem has the potential for
further development of the concept of "opposite operations." Consider the
events of the streetcar ride. Let's make a list of these events.

Several passengers begin the streetcar ride.

Passengers are riding down the hill to the first major curve.
Half of the passengers are "thrown off."

Half of another passenger is "thrown off."

Passengers are riding down the hill to the second major curve.
Half of the remaining passengers are "thrown off."

Half of another passenger is ''thrown off."

Twenty passengers remain aboard the streetcar.

What preceded the "twenty passengers remained aboard the streetcar"
condition? Consider visualizing the situation as a motion picture in slow
motion running in reverse. The twenty passengers, then the alleged 1/2
passenger are '"doubled” to get back to the condition of '"riding back up the
hill from the second major curve.'" Continuing back up the list of events, we
express them mathematically and in reverse sequence.

20 : Twenty passengers remain.

20 + 1/2 : Twenty passengers plus half a passenger
are riding.

2(20 + 1/2) : Riding "back up the hill" from the second
curve.
41 + 1/2 : Half of the passengers are now "back on"

the streetcar.

2¢41 + 1/2) : Riding "back up the hill” from the firat
curve.
83 : "All" passengers are back on the streetcar.

The depth of understanding of the concept of "opposite operations," such

as dividing by 2 and multiplying by 2, subtracting 1/2 and adding 1/2, as well
as the reversal of the order of operations develop during such problem-~solving
experiences. Further, the structure of mathematical ideas and strategies for
solution of mathematical problems accrue through systematic experiences of
this sort.
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As a third example of processes that can aid in skill development and
development of conceptual understanding, we now consider the heuristic process
referred to as "decomposition.'" Let us again do this within the context of a
praoblem.

Chord AB of circle O is extended to .
meet the extension of diameter ED
at C. AD is drawn. If BC ¥ AO, E ) D
what is the relationship between

angle AQE and angle ACE?

The key idea of "decomposition" is that of breaking the problem into
subproblems, the sclution of which taken together is a solution to the
original problem. To this end, consider the alternate goal of fipnding the
meagure of angle CAQO. If this quantity were known, the problem would be
solved, since angle ECA is an exterior angle of triangle AOC and as such angle
EOA is equal in measure to the sum of angles CAC and C. Now, how could we get
angle CA0? 1f we could determine the measure of angle ABO (since AG and BO
are radii of the same circle), we would know angle CAO0. This we are able to
do since BC ® AC (and hence BO) was given.

While examining the decomposition heuristic, a new view of isosceles
triangles and skill in the use of the theorem "the exterior angle of a
triangle is equal in measure te the sum of the measures of the remote interior
angles" emerge. This blending of means of problem solving and ends of concept
development is efficient; each complements the other; each is strengthened by
the analysis of the other.

As a final example of heuristic processes that provide useful
attack-mechanisms for problem solving while simultaneously serving to develop
concepts and skills, let us consider the heuristic “use of definition.' One
may ask, "in what sense is 'usge of definition' heuristic; that is, how does
'use of definition' serve to aid discovery?" Consider the problem:

On the first of 20 laps in a stock car race, JG averaged 120 km per
hour, while on the next 20 laps, his average speed was 110 km per
hour. What was his average speed for the 40 laps?

It almost seems as if the rate should be 115 km/h. But no, that is too
obvious and alsc assumes equal times for the two sections of 20 laps (which .
was not the case). How can we then approach the problem? Make use of
definition. To use definition, we nmust intraduce both total distance and
— —— -—— totel—time~ -To-this-end, let: - . ___ _ _ _ __ _ _ _ _ _ _ _ __

D = distance for 20 laps.

D/120 = time for the first 20 laps.

12



D/110 = time for the next 20 laps.

2D total distance.

p/120 + D/110 total time.

Then the average rate is given by:

Average Rate = 2D / (Df120 + D/110) = 2 / (1/120 + 1/110)

114.78 km/h.

While strengthening the concept of average speed, this use of definition has
led to the discovery of harmonic mean, a deep concept that provides a greater
understanding of inverse relationships.

These examples of heuristic processes suggest the general idea that
teaching for problem solving can produce greater conceptual understanding and
more complete and lasting skills. This is true of a wide variety of heuristic
processes and is surely not limited to those used above to illustrate the
idea. The spiral development of these and other heuristic processes can bring
confidence to the activity of problem solving, can strengthen basic skills and
conceptual understanding, and most of all can provide students a more honest
view of mathematics and mathematical thought.

ORGANIZING FOR PROBLEM-SOLVING INSTRUCTION

Selecting Problems

Many heuristics useful to solving problems are general and are thus
useful across the subfields of wathematics. For example, 2z guess and test
heuristic is quite useful in geometry as well as in arithmetic, number theory,
and algebra. Thus selecting problems to develop the knowledge of such
heuristics and how to use them is subject independent, at least to an extent
worthy of development. Selecting problems appropriate to a group of students
that allow the use and discussion of guess and test, decomposition and
recombination, "use of definition," symmetry, working backward, solving
simpler related problems, and sc on is a beginning point for teaching for
problem solving at all levels of wmathematics instruction.

Secondly, exercises taken out of context are frequently useful as
problems. For example, carefully chosen examples from chapters further ahead
in a textbook can easily provide novel, nonroutine problem-solving
experiences. Their solution provides readiness activity for the upcoming
concepts as well as a chance for the development of such modes of attack on
situations for which a ready-made plan for solution has not been expositorily
presented. Consider, for the sake of illustration, the following pair of
related problems:

How many numbers are there that leave a remainder of 1 when divided
into 597

13



What is the greatest integer that will divide into 85 and 141 and
leave the same remainder?

Working these in problem-solving sessions with discussions of heuristic
processes useful to their solution and with a post hoc examination of the
solutions can go far in setting the stage for the development of the concept
of greatest common divisor as well as the skill of finding the greatest common
divisor.

Some textbooks are so structured as to foreshadow upcoming content. The
problem-solving appreoach, in such cases, can be quite beneficial in the
development of a student's power of mathematical reasoning and a perspective
of what mathematics is really like.

Finally, introducing problems from previcusly encountered sections of a
textbook sometime after new content has been discussed may provide interesting
new insights into problem—-sclving processes and concepts. Consider, for
example, the "distance-rate—time"” problem mentioned by Krutetskii (1976, p.
126).

A cyclist is supposed to be at a destination at a definite time. It
is known that if he travels at a rate of 15 km per hour, he will
arrive an hour early, and if his speed is 10 km per hour he will be
an hour late. At what speed should he travel in order to arrive on
time?

This would naturally fit as an exercise following a section in an algebra
book on simultaneous equations. Suppose, however, that the problem were
reintroduced after a discussion of "least common multiple” (for example, in a
discussion of operations on rational algebraic expressions just after the idea
of getting a least common denominator of two fractions). An alert student
might observe, under the circumstances, that the solution to the problem
required a number that is divisible by 10 and by 15, as well as three
consecutive integers T-1, T, and T+l. Searching the multiples of 30 would
lead to the multiple 60, which is divisible by the three consecutive integers
4, 5, and 6 and thus to the solution of 12, since

4x15 = 60

5x* 7 = 60, (? is 12, the solution), and

6x10 60.

The structure of this problem becomes clearer through the concept of harmonic
means. The solution path becomes rather direct as follows:

—_———— - = 2

Rate = 1710 + 1/15~~ =~ ——= —(— —— —— _ _ ____ _

The justification of this as a solution is left as an exercise, or as a
problem as the case may be, for the reader.

14
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CREATING RELATED PROBLEMS

As conceptual understanding and problem-sclving ability grow concurrently
the development of sets of related problems that bring out structures become
essential. Problem—solving strategies are instilled through insight into
structure. The development of this insight arises over time and through the
abstraction of similarities in otherwise quite different problems. Consider
now the following set of problems.

smong the first 50 natural numbers, there are 25 that are divisible by 2,
and 16 that are divisible by 3. How many of the first 50 natural numbers
are divisible by either 2 or 37

How many numbers less than 1000 are there that are divisible by both 3
and 57

What is the probability that a number chosen at random from the first 25
perfect squares is also a perfect cube?

How many numbers less than 1500 are there that are divisible by neither 3
nor 57

The Rainbow Ice Cream Parlor, which is open seven days per week, has
unusual schedules for its employees. For example, Jane works every 7th
day, Tim works every 3rd day and Rick works every 2nd day. If Jane, Tim
and Rick were all working on June 1, during how many days in June were
none of the three working (June has 30 days)?

These problems, if experienced in problem-solving sessions distributed
across a portion of the school year (that is, hopefully not all at the same
time), can provide a varlety of useful ideas. First, a view of “counting”
arises (999 + 3 “counts” the number of multiples of 3 less than 1000, etc.)
that may give new insight into the number system. Secondly, set relationships
and a new perspective on set union and intersection may appear. All in all,
the structure of a problem and a sense of the importance of comparing and
contrasting related problems should emerge through such experiences.

TOWARD UNDERSTANDING STRUCTURE AND USING RELATEDNESS

The beginnings of the importance of the activity of mathematical problem
solving as a means of developing intuition about mathematics comes from
understanding problem structure and using relatedness. As the previous
sections have suggested, sets of related problems, when taken together, help
develop this idea of structure. Further, approaching related problems from
different vantage points will provide a unity to the problem set and the
problem-solving experience that will develop strategies of problem solving in
students.

Let's consider two other problems, each of which is related to a
previously encountered problem in our discussion.
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In rehearsal of a Broadway opening a director estimated a certain
number of hours of practice were essential. BShe calculated that by
rehearsing 60 hours per week the show would be ready 1 week earlier
than the opening date, but by practising 40 hours per week it would
not be ready until 1 week after the opening date. How many hours
per week of rehearsal would be necessary for the show to be ready on
time?

If Coca Cola is 30 cents per 12 ounce can, we will be able to buy
one less can than we need; but, if it sells for 20 cents per can we
can buy one can more than we need. How much money have we for
buying Coca Cola? How many cans do we need?

These problems, though very different in context and content, are
structurally quite similar. A meaningful activity that helps a student
develop insight into the structure of a problem is that of creating a problem
that is "like" a given problem.

Experiencing problem solving, learning the thought processes of
matheratics (the heuristics of Polya) and working toward the concepts of
related problems and the structure of a problem are a sequence of
problem—solving activities that are valuable goals of mathematics. Not only
do they describe important ideas of a mathematics curriculum, but they provide
new vehicles for accomplishing traditional goals of skills and conceptual
understanding.
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An Instructional System for
Mathematical Problem Solving

by

Randall I. Charles
Woods County Schools

Considerable attention has been given to the topic of mathematical
problem solving. Indeed, most teachers now know that one of the most
important goals of mathematics education is to develop in each child the
ability to solve mathematical problems. Although most teachers are aware of
the important role problem-solving experiences play in mathematics education,
teachers still have a variety of questions concerning how to develop and
implement 2 mathematical problem-solving program.

Most of the questions teachers have regarding the development and
implementation of a problem-solving program are concerned with two issues.

- How should one organize a mathematics program to include
problem-solving experiences?

- What specifically should be done to develop students'
mathematical problem-solving abilities?

The purpose of this paper is to describe an instructional system for
mathematical problem solving that was designed to answer these questions. The
instructional system described here was designed for and used with average and
high-achieving students at the junior high school level. At the end of the
paper some ideas are provided concerning ways in which the instructional
system might be modified for low-achieving junior high school students.

Components of the Instructional System

There are two compeonenta to the instructional system described in this
paper: organizing for instruction and teaching strategy. The organizing for
instruction component provides answers to five questions.

(1) What types of problems should be used?

(2) wWhat should be the minimum time allotment for problem solving?

(3) What grouping patterns should be used for problem-solving
activities?

(4) What material is needed for problem solving?

(5) How should students be evaluated?



The

teaching strategy component identifies specific behaviors one can use in

the classroom to help develop students' attitudes and abilities related to
mathematical problem solving.

instructional programs.

Organizing for Instruction

Problem—-sclving experiences are not presently an integral part of most

with problem-solving experiences must make several difficult decisions

concerning the structure of a problem-solving program.

one answer to each of the five questions given above related to "organizing
for instruction." Although it is clear other answers could be given Lo each
of these questions, it is also clear that each teacher must at some time

provide answers to at least these questions if problem solving is to become a
significant part of one's instructional program.

Question #1: What types of problems should be used?

There are many different types of mathematical problems that could be

used in a problem-solving program. However, before one begins to select

particular types of problems it is imperative that a position be established
regarding the nature of a mathematical problem and problem solving. In this
paper, a mathematical problem is considered to be a mathematical situation in
which an individual or a group is called upon to perform a task for which that
individual or group has no readily accessible procedure for determining a

solution.

Therefore, teachers interested in providing students

This section provides

Problem solving, as used in this paper, refers to the coordination

of previous experience, knowledge, and intuition in an effort to determine an
outcome to a situation for which a procedure for determining a solution is not
known {see Lester, 1978).

Two types of mathematical problems were selected for this instructional

system: process problems and translation problems. Below are examples of
each: )

Examples - Process Problems

The tennis club was planning a tournament for its club with 8
members. Each member was to play every other member.” How many
matches need to be scheduled?

It takes 1,140 pieces of type to number the pages of a book. Each
piece of type is used only once. How many pages are in the book?

Examples — Translation Problems
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_Fourteen bears each ate 3.4 kg of meat. After all the bears had
finished €ating, 7.4 kg were—left—over. —How-much meat was_there in
all?

A tecord costs $5.98. How wuch do four records plus a sales tax of
3% total?



Process problems emphasize a three-step process: (a) understanding the
problem, (b) developing and carrying out a solution strategy, and (c)
evaluating the solution. Translation problems, frequently called "textbook
word problems," emphasize translating from a real world situation to a
mathematical sentence.

Some have argued that translation problems do not belong in a "good"
problem-solving program. However, others have argued that translation
problems may serve a purpose when they are used in particular ways (e.g., see
Charles, 1981). Most textbook word problems are matched to the concepts and
skills involved in their solution. That is, if s textbook problem is located
at the end of a lesson or chapter, the concepts and skills involved in the
solution process are generally developed in the same lesson or chapter. When
textbook problems are presented in matched situations, there is little
difficulty identifying the concepts embodied by the story situations.

Typical textbook problems are included in the system described in this
paper. However, in this system these problems are only used in non-matched
gituations, meaning that the concepts and skills involved in the solution
process are ones the students have not worked with for at least two weeks.
Experience with non-matched problems may promote the types of behaviors
identified in the definition of problem solving given earlier. Furthermore,
experiences with non-matched problems may also promote greater understanding
of the concepts embodied by story situations.

Question #2Z: What should be the minimum time allotment for problem solving?

Regardless of the amount of time one has available for mathematics
instruction, a commitment must be made establishing problem solving as a
significant part of the curriculum. Table 1 suggests possible minimum time
guidelines for a junior high schocl program. These guidelines were selected
based on a 60 minutes per day allotment for mathematics and they suggest that,
as a minimum, approximately one-third of one's time teaching mathematics
should be devoted to problem-sclving experiences. These guidelines also
suggest that experiences with process problems should dominate a problem-
solving program. Furthermore, these guidelines are minimum and extensions of
the time devoted to problem solving should be given to process problems, not
translation problems. Finally, experience using these guidelines shows that
allotting one-third of one's program to problem solving is not excessive. In
fact it is quite possible that considerably more time could be given to
problem-solving activities, particularly as one gets further along in the
school year, without detrimental effects on the quantity and quality of other
instruction.

Table 1

Possible Minimum Time Allotments for Problem Solving

FPeriod Content Frequency Length
Sept. translation 4 days/wk. 5-10 min./day
(1 week) problems
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Sept. process 1 day/wk. 30-40 min./day
(3 wks.) problems

translation 3 days/wk. 5-10 min./day
problems

Oct.-June process 2 days/wk. 30-40 min./day
(32 wks.) problems

translation 2 days/wk. 5-10 min./day
problems

Question #3: What grouping patterns should be used for problem-solving
activities?

An instructional program for mathematical problem solving should include
individual, small-group, and whole-class experiences. Each of these grouping
patterns emphasizes particular problem—solving behaviors not emphasized by the
others. For example, one of the behaviors required of a student in a2 small
group situation that is not involved in individual work is the need to
comprehend, evaluate, and act upon ideas and questions raised by others. The
process of dealing with the ideas and questions of other students, influences
and may facilitate one's own thinking and progress toward the solution of a
problem.

Following are four guidelines for selecting grouping patterns.

- use small groups (3-4) for wmost in-class work with process problens
- use individual work for most in-class work with translation problems
- encourage individual work with process problems via homework.

Some teachers have found it useful to give a process problem for
homework on Thursday and discuss the students' work on that problem
the following Tuesday. Furthermore, the homework problem is
frequently an extension of the problem attempted on Thursday or a
problem whose sclution involves strategies similar to those used in
the problem attempted on Thursday.

- include whole-class activities as part of your teaching—strategy. — — —__ _ ____
Question #4: What material is needed to teach problem soliving?
A collection of 'good" mathematical problems is a necessary ingredient

for a problem—solving program. Of course, it is not an easy task to identify
"good" mathematical problems. Although experience using a problem may be the
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best judge of quality, there are some characteristics one should attempt to
manifest in the set of problems used for instruction. For process problems
there are at least four desirable characteristics. They should:

1. interest students; problems may or may not be from the
real world,

2. 1involve relatively little formal math, that is, the
mathematical content needed to solve the problem
should be familiar to students,

3. not be able to be solved solely by using a computational
algorithm (at least not one known to the students), and

4. be able to be solved using more than one strategy.

For both translation and process problems, characteristics like the following
should be considered when organizing sets of problems.

1. content. The problem set should reflect a variety of
mathematical content (e.g., geometric as well as numeric).

2. logical structure. The logical structure of problems
should be varied. Logical structure refers to factors
such as extraneous or insufficient data, the number of
conditions in the problem, and the number of steps to
solution.

3. problem setting. Problems should be presented in a
variety of settings. Two factors that should be
considered are real world versus "pure"” mathematical
settings and the existence or nonexistence of pictures
accompanying problem statements.

4. reading. Reading-related factors should be varied in
the problem set. Two factors to be considered are the
amount of reading in problem statements and the
existence of special words and symbols (e.g., "two
versus 2).

In addition to good sets of problems, the teaching strategy one selects
for problem solving can establish a need for particular instructional
materiale. For the teaching strategy described in this paper, the
problem-solving bulletin board shown in Figure 1 is required. The ways in
which this bulletin board are used for instruction are explained later.

Problem-Solving Strategies

Helping Strategies General Strategies

1. Read the problem again. 1. Look for a pattern,
generalize.
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2. Look for key phrases. 2. Guess and check.
3. Write what you know. 3. Work backwards.

4. Make an organized list, table, or chart. 4. Write an equation.
5. Use a picture, objects, or graph. 5. Use deduction.

6. Experiment or act-out the problem.

7. Use simpler numbers.

B. Solve a simpler problem.

Figure 1: Problem-solving strategies bulletin board.
Question #5: How should students be evaluated?

This question is the most difficult one to answer. One reason it is
difficult is that the realities of the classroom and the goals for teaching
problem scolving are not always compatible. For most students, all of their
experiences in mathematics have at some time been assessed through some form
of a written test. In turn, scores on a collection of written tests are
transformed into a final mark for the mathematics class. Thus, for many
students the importance of an activity is determined by the contribution of
that activity to one's mark in mathematics.

There are two essential goals for teaching mathematical problem solving:

1. to improve a student's willingness to attempt to solve
mathematical problems and to persevere in those
attempts when success is not immediate, and

2. to develop a student's ability to select and utilize
problem-solving strategies.

Both of these goals are not presently and perhaps may never be subject to
assessment through traditional written test formats. Thus, a conflict exists
between the goals of a problem-solving program and the assessment expectations
of many students.

The most desirable way to deal with this conflicr is to change pupils'
assessment expectations. Although this is difficult the results are worth the
effort. One way pupils' assessment expectations may be changed is through the
use of a teaching strategy that emphasizes the goals given above. A teaching
strategy that promotes the attainment of these goals is one that enables each
student to find some success in most problem-solving experiences. For many
students, the enjoyment provided by successful problem-solving experiences 1is .
sufficient to allay achievement expectations. The teaching strategy developed
_ _1in the next section of this paper has that potential.

Another technique useful for dealing with assessment expectations is to
implement some type of an accountability system. For example, teachers who
assign a process problem for homework frequently verify efforts to solve the
problem by collecting students' "work." The assessment in this case focuses
on whether a student did or did not show evidence of attempting to solve the
problem. The use of an accountability system enables one to satisfy the
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assessment expectations of students while focusing on the attainment of the
goals for teaching problem scolving.

Finally, it 1s important to note that the nonexistence of written
assessment instruments related to the goals for teaching problem solving does
not mean that one should not attempt to assess these goals. Rather, some form
of a subjective but systematic process for recording observations of students'
growth should be established. Individual student interviews and analyses of
written work can be combined to help assess progress toward the goals for
teaching problem solving.

Teaching Strategy

Fundamental to the development of a teaching strategy are the goals one
has for teaching mathematical problem solving. Two essential goals for a
problem-solving program were identified above. The teaching strategy
described in this paper was designed to promote the attainment of these goals.

There are two related parts to the teaching strategy described here: the
classroom climate and teaching actions. The classroom climate component
identifies behaviors a teacher should model to develop a classroom atmosphere
conducive to mathematical problem solving. The teaching actions component
identifies some specific behaviors to use to help develop a student’'s
abilities to select and utilize problem~solving strategies.

The Classroom Climate

It is absolutely essential that the classroom atmosphere be conducive to
mathematical problem solving. In fact, experience suggests that the
classrcom climate is so important in the development of a successful
problem—solving program that establishing a conducive atmosphere for problem
solving should be the most important goal of all problem—-solving experiences
at the beginning of the school year. This is particularly true if students
have not had prior experience in a mathematical problem-solving program.

Most students will have had scme experience with translation problems by
the time they are in junior high schoel. Unfortunately, by this time many
students have developed a strong dislike for typical textbook problems. One
reason students develop a dislike for these problems may be the resulc of
having too few experiences with them throughout the elementary school program.
Many teachers have found that providing junior high school students with
frequent non-threatening experiences solving non-matched problems is a useful
strategy for changing attitudes toward textbook word problems.

Process problems dominate in the instructional system developed in this
paper. Process problems are quite unlike translation problems and most
students have not had any exposure to process problems. For these reasons,
the remainder of this section will focus on ways to develop a classroom
atmosphere conducive to work with process problems. However, most of the
ideas are also applicable to work with non-matched translation problems.
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One must anticipate and develop ways for dealing with two probable
consequences when students are introduced to process problems. First, many
students will be reluctant to pursue their ideas when they are not confident
these ideas will lead to a correct solution. Students sometimes reveal this
situation through a comment like "I don't know what to do" or by simply not
doing anything. The second consequence is that many students may not be able
to obtain a correct solution or any solution to particular problems. Students
frequently reveal this situation by not wanting to share their solution
attempts with others, including the teacher.

Both of these consequences need not be detrimental to a student's work N
with process problems. There are at least two behaviors a teacher can use to
deal with these consequences.

l. Encourage students to explore any ideas (i.e., strategies)
that may help them understand and/or solve a mathematical
problem and do not censor ideas generated by students.

2. Recognize and reinforce different kinds of excellence.

Regrettably, most students "new" to a problem-solving program believe
there is one and only one way to solve every mathematics problem. Students
must realize this is not true and process problems are an excellent vehicle
for doing this. 1In those initial experiences with process problems, when
students seemingly don't know where to start, discussions with students and
questions should be used to elicit any ideas that might be explored. One idea
from a group is not enough. Continued discussions and questions should be
used to illustrate that different ideas are acceptable and desirable in
problem—solving situations. There are, of course, situations in which
students really don't know how to start work on a problem. The teaching
actions discussed shortly provide one way to deal with this.

Concomitant o encouraging and eliciting ideas from students is avoiding
censorship of students' ideas. When working with process problems, it is
quite likely that students will generate ideas that, with great certainty,
will not lead to a correct solution. At these times, it 1s very important
that students not be stopped from pursuing their ideas. There are twc reasons
why censorship should be avoided. First, it frequently happens that ideas
that appear "unproductive" to others may indeed be productive to the user.
Another and perhaps the most important reason is that a classroom atmosphere
that is conducive to problem solving is one in which students are keenly aware
of the freedom as well as the desirability of exploring any strategies for
understanding and/or solving mathematical problems.

Most students "new" to a problem-solving program also believe thg goal of

——— —— -ali-problem-soiving experiences_is to_obrain a_correct solution. Because of
this, students are frequently frustrated when they do not obtain a solution to
a process problem. For all experiences with process problems and particularly
for those initial experiences, the emphasis of the problem-solving activities
should be on behaviors other than obtaining a correct solution. The goals for
teaching problem solving suggest at least three behaviors that should be
continually recognized and reinforced in problem-solving situations: (a) a

_—— e e s
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student's willingness to start work on a problem, (b) a student's perseverance
in attempting to solve a problem, and (c) the selecting of a strategy for
solving a problem, regardless of whether that strategy did or did not lead to
a correct solution.

Teaching Actions

The teaching actions selected for problem solving must be consistent with
one's view of how problem solving is learned (see Bourne, Ekstrand, and
Dominowski (1971). The teaching actions described here are based on an
information-processing peoint of view. 1In this view of problem solving, the
task of the problem solver is to select from a variety of "alternatives" those
that will move him/her toward a solution. The "alternatives" confronting a
problem solver lie in areas such as the different problem-solving strategies
one can use (e.g., drawing a picture, working backwards, etc.), the various
intuitions one generates in the process of solving a problem, and the variety
of previocus experiences one brings to a problem-solving situation. The
primary goal of the teaching actions described here is to develop the ability
to search among and evaluate alternatives when solving mathematical problems.
Concomitant to this goal are the needs to make students aware of strategies
useful in solving mathematical problems and to develop students' abilities to
utilize these strategies.

The teaching actions developed here are for work with process problems,
not translation problems. Although some of the ideas in this section may be
appropriate for translation problems, experience suggesta that at the junior
high school level average and high-achieving students need little “teaching"
to develop their abilities related to translation problems.

Learning how to solve mathematical problems is quite different from other
types of learning one encounters in the study of mathematics. For example, in
concept learning there is a particular kind of subject matter onme is concerned
with, namely, concepts. Similarly, in skill learning, a mathematical skill is
the object of instruction. Problem solving, on the other hand, is not
concerned with a particular kind of subject matter but instead is concerned
with a process. This difference between problem solving and other types of
learning in mathematics has implications for the development and evaluation of
effective teaching actions.

One implication of this difference is that teaching actions for problem
solving should change over time, whereas teaching actions for particular kinds
of subject matter should remain fixed. For example, if a teacher develops 20
concepts over some period of time, the teaching actions used to develop the
first concept should be similar to the teaching actions used to develop the
last concept. On the other hand, if the teaching actions used for initial
problem-solving experiences are successful at developing students' abilities
related to the problem-solving process, then the teaching actions should
change as students' abilities related to that process improve. In the
discussion that follows, particular attention is given to the ways in which
teaching actions should change as students' abilities develop.
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It was suggested earlier that small groups of 3 to &4 students be used for
most in-class experiences with process problems. The time allotted for work
with process problems (at least 30-40 minutes per session) can be divided into
three sections according to the work in small groups. The three sections are
simply BEFORE students form their groups and start work on a problem, DURING
the time students are in small groups working on a problem, and AFTER students
have completed work on a problem (for whatever reason) and have returned to a
whole—class structure. In each of these time divisions there are particular .
teaching actions one should use. Table 2 shows the teaching actions one
should use in the "middle" of a classes' development of their problem-solving
abilities. The teaching actions shown in this table are discussed first, -
followed by a discussion of ways in which these actions should be modified for
students' initial experiences with process problems and ways in which these
actions should change as students' abilities to work with process problems
continue to develop.

Table 2

Teaching Actions for Process Problems

BEFORE

1. Read the problem to the class or have a student read
the problem.

2. Agk if there are words or phrases they do not
understand; provide explanations as needed. (Note:
Be careful that one's explanations do not suggest a
solution strategy.)
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DURING

1. Question students and observe their work to identify
where the students are in the problem—-solving process.

a. They are trying to understand the problem.

b. They are developing or carrying out a solution
strategy.

¢. They have obtained an answer.

2. 1f necessary, refer students to the problem-solving
strategies bulletin board and encourage them to

select and implement a strategy or strategies.

3. 1f necessary, provide hints and questions.

4. For early finishers, give an extension to the problem TTTTT T s — -
or have the students make up an extension to the
problem.
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1. Show and discuss strategies used by the class which
did and did not lead to a correct solution.

2. Name the strategies used by the students and draw
their attention to the names of the strategies on the

problem-gsolving strategies bulletin board.

J. If possible, relate the problem to previous problems
and discuss possible extensions of the problem.

4. Evaluate the strategies used by the class.

5. 1f appropriate, discuss special features of the
problem,

BEFORE. The two teaching actions at this stage should be used to
illustrate the importance of carefully reading mathematical problems and of
focusing on the meanings of words and phrases that may have special
interpretations in mathematics. Also, at this stage, it is very important
that the problem statement be visible to every student. Preferably, all
students would have a copy of the problem so they can write anythling on the
statement which may help them understand and solve the problem.

DURING. The first three teaching actions shown in Table 2 are the most

critical at this stage. Teaching action 4 is a classroom-management strategy

for meeting the needs of high-achieving students. However, in the AFTER
segment of the teaching actions, "problem extensions'" play an important role
for all students.

There are two reasons why one should identify a group's "location'" in the

problem~solving process. First, categorizing a group with respect to the
problem-solving process enables one to diagnose a group's strengths and

weaknesses related to problem solving. For example, one group of students may

frequently have difficulty understanding process problems while another may
frequently have difficulty generating ideas for solution strategies.
Explicitly identifying a group's location in the problem-solving process
enables one to provide appropriate instructional emphasis throughout the
problem—-solving program. The second reason it is important to categorize
groups with respect to the problem-solving process is to facilitate the
implementation of teaching action 3. This teaching action is discussed
shortly.

The most critical moment in teaching problem solving is the time when
students indicate to the teacher that they are "stuck,” that is, that they
have come to a blockage in their solution of the problem and they don't know
what to do or try mext. Teaching action 2 suggests that the first time a
group encounters a blockage, they should immediately be referred to the
problem-solving strategies bulletin board and encouraged to select and
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implement some strategy or strategies for solving the problem. Altheough the
implementation of this teaching action is quite easy, its importance should
not be underestimated. There are at least two reasons why the use of the
bulletin board is important.

1. The use of the bulletin board forces a group to
self-select a problem-solving strategy without relying
on teacher direction. This action is consistent with -
the goal of developing students' abilities to search
and evaluate alternatives in the problem-solving process.

2. The bulletin board provides a "crutch" needed by most
students. Figure 1 shows there are at least 13
strategies from which one must select a strategy or
strategies for each problem situation. Experience
shows it is unrealistic to expect students to keep
all of these strategies in memory unless they have
had considerable experience using them.

The use of the problem-solving strategies bulletin board is often
sufficient to enable a group to continue work on a problem. However, at those
times when the use of the problem—sclving strategies bulletin board is
unproductive, teaching action 3 should be used. The purpose for using hints
and questions is to facilitate, not remove, students' decision-making. To do
this, however, hints and questions must be very carefully selected so as not
to identify completely the direction to solution. Also, it is ilmportant teo
realize that hints and questions, even carefully selected ones, will usually
be received differently by different studeunts. For some students, hints and
questions will be no help in moving them toward a solution. For other
students, hints and questions are confusing and may even suggest to the
students that their approach will be unproductive if it appears different than
the approach suggested by the hint. And, of course, for many students hints
and questions are indeed useful. Often, hints and questions enable students
to pursue a direction previously considered unproductive, to identify the
inappropriateness of a particular approach, or to identify an idea to pursue
when one was not apparent.

The hints and questions one wishes to use for a particular problem should
be identified prior to the problem-solving session. When hints and questions
are written in advance, the teacher is forced to “think through" a problem
before, rather than with, the students. As a result, the teacher is better
able to identify where students are in the process of solving the problem and
is better prepared to select appropriate hints and questions during the
problem—-solving session. The hints and questions one prepares should be -
categorized according to the three steps in the problem-solving process: {a)

Although hints and questions should be categorized according to the
problem-solving process, the particular hint or question one provides at a
given moment may not be from the category at which the students are currently
working. For example, students may have reached a blockage in the process of
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carrying out a solution strategy and to get them past that blockage the
teacher may ask a question related to understanding the problem. The teacher
must also be prepared for the situation in which his pre-selected hints and
questions are not appropriate, and another comment is needed to help the group
along.

Finally, it is important to realize that just as the three steps in the
problem-solving process are not necessarily sequential and disjoint, teaching
actions 1 through 3 at this stage are also not necessarily sequential and
disjoint. Frequently, thege teaching actions may be used in a "cyclic"
fashion and may be repeated several times in solving one problem.

AFTER. Near the end of the time for small group work, at least two
students, each from a different group, should be asked to place their solution
efforts on the chalkboard. If possible, one of the solution efforts should
provide a correct solution and one an incorrect or no solution at all. After
the students have put their work on the board, a whole-class discussion should
be used for the teaching actions at this stage.

Teaching actions 1 and 2 are straightforward. Their purpose is to focus
on the selection and implementation of problem-solving strategies. Teaching
action 3 is intended to demonstrate to students that problem-solving
strategies are not problem specific and to help students recognize different
kinds of situations in which particular strategies may be useful. Although it
is acceptable and desirable that different solution strategies be sought for
every problem, it is important that the different approaches that led to a
solution be evaluated (see teaching action 4). The criteria for evaluating
solution strategies are generally dependent on the problem being solved. For
example, if pattern finding is the general strategy needed for solving a
problem, the approaches used should be evaluated with respect to the degree to
which each facilitates identifying a generalization of the pattern.

Finally at this stage, any special features of the problem just attempted
should be discussed with the class. For example, some problem statements
include a picture or a diagram. In these instances, the way(s) in which the
picture or diagram influenced the students' ideas should be discussed.

Adjust instruction for initial experlences. The extent to which the
teaching actions in Table 2 need to be modified for experiences with process
problems at the beginning of the-:year depends on the amount of previocus
experience students have had with process problems. For the guidelines below
the assumption is made that students have not had any prior experience with
process problems.

Before - Teaching actions 1 and 2 in Table 2 should be used at this time.
Also, an additional teaching action one should use is a whole-class discussion
concerning (a) understanding the problem and (b} develcping and carrying out a
solution strategy. The hints and questions one prepares for a problem can be
used as a basis for this discussion. For these initial experiences, the first
stage of the problem-solving process should be completed as a whole-class
activity. In other words, students should understand what they are being
asked to find in a problem before they begin work in their small groups. For
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the second stage of the problem-solving process, developing and carrying out a

solution strategy, the class should discuss but not implement possible
The use of a whole-class discussion for these purposes
facilitates success on the students' initial experiences with process

solution strategies.

problems.

(a)

{b)

(c)

(@)

students.

During - There are four key points at this stage.

The primary goal should be to establish a classroom climate

that is conducive to mathematical problem scolving.

Most students will not have prior experience in small-group
problem-solving situations. Therefore, there is a tendency

for students not to share their ideas with others and for
students to work individually on their initial attempts.
In these initial experiences, attention must be given to
establishing a group problem-solving effort. This can be
facilitated by telling a group from the start that it is
fine to use more than one approach; however, everyone in
the group must understand what approaches are being tried.
Related to this is the fact that within a group there are
usually one or two students who "see the solution" before
others. To promote small-group problem solving, one
should insist that everyone in the group be able to
explain how a solution was obtained. This not only
promotes small-group problem solving but also serves as
an instructional technique with respect to the selection
and implementation of problem-solving strategies.

The hints and questions used during initial experiences
with process problems should be more directive than those
used later. That 1s, hints and questions should, with

great certainty, enable a group to continue work on a prohlem.

The problem—solving strategies bulletin board should not
be on the wall when school starts. Rather, the problems

one uses at the beginning of the program should be selected

so they elicit the strategies one wants to include on the
bulletin board. As each problem is sclved, the strategies
used in the solution should be named and the name of the
strategy should be added to the bulletin board. This
approach enables one to "build-up" the strategies bulletin
board over time. Obviously, teaching action 2 in Table 2
cannot be used for the first process problem attempted.

After - The concept of a "problem-solving strategy" will be new to most

As a result, direct instruction from the teacher concerning the

implementation of particular strategies is needed at the beginning of the

program.
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they will no doubt need help in constructing a table in a way that facilitates
solving the problem. Therefore, in those initial experiences considerable
time must be given to teaching actions 1 and 2 in Table 2. The only other
modification in Table 2 is that teaching action 3 at this stage will not play
a large role since the students have not had prior experience with process
problems.

Adjusting instruction for later experiences. There are some changes that
should occur in the teaching actions at this stage and, in fact, naturally
occur quite often as students' problem-solving abilities develop.

Before - Both of the teaching actions shown in Table 2 may be phased out.
The more experience students have with process problems the more facile they
become at reading mathematical problems.

During - One modification of the actions at this stage is that the hints
and questions one uses should be more general than those used earlier; that
is, they should be less directive with respect to productive solution
strategies. Another change in the teaching actions at this stage is related
to the bulletin board. One goal of the teaching actiomns in Table 2 is that
students will eventually commit to memory all of the strategies on the
bulletin board. It may be possible at some point in the program to
"tear down' the problem—solving strategies bulletin board. The first time
students reach a blockage in solving a problem they should still be encouraged
to select and implement a strategy. However, now the "crutch" they had been
using has been removed.

After - There are two modifications in the teaching actions at this
stage. First, students should assume more responsibility for naming and
explaining strategies used in problem solving. Also, relating a problem to
similar ones and searching for extensions of a problem should play an
important role in the problem-solving session.

Modifying the Instructional System for Low-Achieving Classes

The instructional system described above was designed for and used with
average and high-achieving students at the junior high school level. However,
with some modification the system developed here may also be appropriate for
low-achieving classes.

In the organizing-for-instruction component there are two changes that
seem important.

1. Problem-solving activities should be included in the program. Some
examples of problem-solving activities are: (a) identifying extra information
in problem statements; (b) writing a question for a story; and (c) telling how
to solve a problem that does not involve numbers.

2. Problem solving should occur daily. Work with process problems may be

delayed until after students have had considerable experience with
problem-solving activities.
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In the teaching actions component there are seven changes that seem
important.

Before

1. Teaching actions 1 and 2 in Table 2 may be needed for a longer period of
time and perhaps always.

2. Whole-class discussions with respect to understanding problems and
developing and carrying out solution strategies should be continued for a
longer period of rime.

During

3. References to the problem-solving strategies bulletin board should be
somewhat specific (e.g., "Try one of these two helping strategies to get you
started.").

4. Hints and questions should be more directive.

5. The problem—solving strategies bulletin board should remain on the wall
for the majority of Lhe year.

6. Considerable attention must be given to establishing a classrcom
atmosphere conducive to mathematical problem sclving.

After

7. Do not ask students to put their solution efforts on the chalkboard
initially. Copy students' work on the board for them until they develop a
willingness to do so themselves.
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Diagnosing Reading Difficulties in
Verbal Problem Solving
by

Jeffrey C. Barnett
Fort Hays State University

Solving word problems has traditiomally been one of the most difficult
activities in the mathematics curriculum at all grade levels. This is not
surprising, since word problems often require the higher levels of reasoning
of analysis and synthesis. Students must not only know how to compute and
work mathematical algorithms, but most importantly, they must know which
algorithms to use and when.

In recent years, many models have been developed to help explain the
problem-solving process. Although these models vary considerably in the
number and type of stages, they all include reading and language processiag in
the early phases of the problem-solving process. There is, however, some
disagreement as to the relative importance of reading ability in solving word
problems in mathematice across age and ability levels. It seems safe to
assume that the ability to read and interpret word problems with facility is a
necessary, but not a sufficient condition for problem-scolving success.
Unfortunately, many students with poor language processing skills never really
get into the analysis phase of solving word problems. Unfamiliar vocabulary
and difficult syntax can distract the students' attention from the problem's
structure, often resulting in confusion, frustration, and lack of confidence.

Fortunately, there is evidence that teachers can help their students
become better problem solvers by devoting special attention to reading
preblems and language skiils as they relate to mathematics. Perhaps a
starting point in the development of reading instruction in mathematics is to
convince both teachers and students that reading mathematical word problems
and textual material is very different than reading regular English prose.
These differences require the adjustment of reading habits and study skills.

In the following discussion, we shall consider a number of specific
problems in the reading of mathematical word problems. For convenience, our
discussion will be divided into four major areas of concern: semantics,
syntax, context, and interpretation skills. Semantics refers to the meanings
of words and phrases. Syntax refers to the arrangements of words and phrases,
the form of words and symbols, and the grammatical structure of problem
statements. Although the term "context' has several meanings, we shall
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restrict our attentinn to the setting of the problem, along the dimensions
real-imaginative, concrete-abstract, and factual-hypothetical. Ilnterpretation
skills refers to the ability to understand graphs, charts, tables, etc.

Within each of these areas, several problems or sources of difficulty will be
identified, followed by suggestions for remediation and some follow-up
activities.

Category I: Problems with Semantics

A. Problem: New vocabulary terms which 2 student may encounter in reading
mathematical material and word problems may have no relevance to the student's
everyday vocabulary. In this situation, these new words are often memorized
without understanding, making recall in the appropriate problem-sclving
situations difficult. For example, words such as addend, secant, denominator,
and hypotenuse have little use ocutside the context of mathematics.

Remediacion: The teacher can help students understand and remember new
vocabulary by writing each new word on the chalkboard or overhead, defining
it, and providing examples. One effective technique is to provide several
examples of the new fterm as well as several non-examples. Students can then
be asked t92 try to develop their own definition, based on similarities and
differences between the examples and non—-examples. Students can also be asked
to generate their own word problems that use the new vocabulary. These can be
displayed on cards or on a bulletin board alcong with definitions and pictorial
examples. One possible idea for a bulletin board is shown in Figure 1.

With some new vocabulary terms, teachers can use structural linguistics
to help students learn and remember definitisns. The meanings of prefixes,
suffixes, and certain root words may already be familiar to students. Terms
such as polygon, quadrilateral, isoceles, acute, obtuse, and pentagon lend
themselves to structural analysis. For example, the term "obtuse" is related
to the word "obese" which means fat or overweight. An "obtuse" angle is a
"fat" angle; i.e., an angle whose measure is more than 90 degrees. Similarly,
the term “acute” means sharp, as in an "acute pain.” Therefore, an "acute”
angle is a "sharp” angle or one whose measure 1s less than 90 degrees. With
the help of a dictionary and thesaurus, many other aids to the memorization and
comprehension of the terms can be found.

NEW WORDS FOR THE WEEK

TERM DEFINITION EXAMPLES PROBLEMS

EQUATION S Wy _—

FACIOR | 1t - - -
COEFFICLENT Cd Lt

Figure 1
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To ensure that new vocabulary has been learned meaningfully, continuous
evaluation should be planned on quizzes, unit tests and on a day-to-day basis
during class discussions. Brief, dittoed tutoarials on the correct use of new
vocabulary terms can be constructed by teachers to supplement classwork and
the text, for those students who need additional help.

B. Problem: Some words have similar meanings in English prose and
mathematical material, but students fail to perceive these similarities when
the words are used in a mathematical context. Terms such as improper, union,
disjoint, intersection, commutative, associative, and distributive often cause
students difficulty in mathematics, even when they are familiar with these
terms as part of their everyday vocabulary.

Remediation: Students will need some help from the teacher in interpreting
familiar terms in a mathematical context. For example, the intersectiocn of
two streets is a familiar concept to most students. A child standing at the
intersection of two streets 15 onm bath streets at the same time. Similarly,
the intersection of two lines or two sets is the set of points that are in
both sets or on both lines at the same time. The term "associate' means to
group or to be grouped with, as in "She is associated with Girl Scouts.” In
the "associative' property of addition, the parentheses group or associate
numbers to be added.

The parallel meanings of words such as those above should be discussed in
detail when introduced for the first time. Students can be asked to write
sentences which illustrate the use of the terms in both mathematical and
non-mathematical contexts. As an assignment, students can draw pictures that
illustrate the similarities in the use of the terms.

MI’ Do“"" cav 'r\\';.s is the

is at the A igigrsec‘\'\nﬂ l‘c
i d B

jntersection of lines A an

13" S5, and vine ok,

Vine S*%
Since marked differences may exist between a child's familiarity with one word
and a different form of the same word, special attention should be devoted to
entire word families. For example, Kane, Byrne, and Hater (1974, pp. 75-90)
found that 76.6 percent of seventh— and eighth-grade children were familiar
with the term associative but that only 39.1 percent were familiar with the
term associativity. Having children read word problems out loud is a useful
technique for determining which words and phrases are causing the most
difficulty.
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C. Problem: Some vocabulary terms in mathematics have different meanings
outside the context of mathematics.

Remediation: Specilal attention should be devoted to words that have the same

spellings and pronunciations but different meanings in regular English prose.,

For example, words such as base, mean, root, times, prime, round, and right

(and there are many others!} often cause confusion. In addition to pointing -
out these differences, teachers could have their classes make a list of words

which have these different meanings and use them to make a bulletin board.

D. Problem: The teacher may not realize that some vocabulary terms are not
familiar to all of the students, particularly in the beginning of the school
year. .

Remediation: A pretest of mathematical vocabulary can be given at the start
of the year or unit of instruction, to determine which students are not
familiar with the required terms. If the class members are significantly
divided on their knowledge of background mathematical vocabulary, the class
can be divided into groups for specific instruction on the meaning and use of
the required terms.

E. Problem: Students may be unable to identify "key words” in the problem
statement that provide clues as to which operation can be used to arrive at a
solution.

Remediation: The problem of being able to determine how to "set up" a
problem, that is, to determine which operations to use for a solution, is
probably cited more often than any other difficulty that students have when
solving word problems. The ability to recognize "key words" and to use them
as clues to a problem's underlying structure is not easy to cultivate, but can
be developed with practice over a period of time. One productive method for
teaching the relationship between 'key words" and problem structure is to have
students underline the words they consider to be clues to the operations
required. For example, in the problem below, the word "and" indicates the
operation of addition, the word "of" indicates multiplication, and the word
"left" indicates subtraction:

David earned $2.50 for cutting grass after school on Friday, and
$2.30 for weeding the garden on Saturday. He gave 1/3 of his
earnings to his friend for helping. How much did he have Jeft?

of and

S 4
1/3 X ($2.50 + $2.30) = 1/3 X $4.80 = $1.60

|

$4.80 ~ §1.60 = $3.20

During the course of the year, the class can compile a list of "key
words" that are associated with the four basic arithmetic operations and
display them on a bulletin board along with several examples. As an activity,
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students could write problems using key words from the class list. Yocung
children could be instructed to write simple problems based on given number
facts in addition, subtraction, multiplication, and division. By reversing
this procedure and using a calculator for the actual computations, students
can be given extensive practice in translating "key words" in problem
statements to mathematical operations.

Caldwell (1980) suggests the following set of problems as a basis for a
class discussion on how the modification of a few "key words' can alter a
problem's meaning and solution:

-~ John has five dollars. He earns three dollars. How much does
he have now?

- John has five dollars. He saves three dollars. How much does

he have now?

- John has five dollars. He spends three dollars. How much does
he have now?

- John needs five dollars. He has three dollars. How much does
he peed now?

As a follow-up activity, Caldwell suggests writing problems with the key words
deleted. Students can then experiment with varying the key words to produce
problems with very different solutions. For example:

- Find the number that is the of 8§ and 4.

~ Oscar 15 cookies. He
cookies does he have ?

three cookies. How many

F. Problem: Students may not realize that the same term may not always
indicate the same operation.

Remediation: Although some words such as sum, total, difference, decrease,
and, left, more, and less are often indicators of required operations,
students should be cautioned to look carefully at the context, for numerous
exceptions do exist. For example, in the first of the three problems that
follow, the word "a" does not imply addition. In the second, the word

"left" does not imply subtraction. The word "sum” In the third problem does
indicate addition, but the operation has already been performed and therefore

15 not required in the solution process.
- What is the product of 8 and 4?
- Jane ran 6 blocks north and turned left. She then walked 7
blocks west. How far was she from her original starting

place?

- Bobbi found that the sum of her 4 quiz scores was 56. What
was the average score?
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as they read through the problem.

Perhaps the best method is to have children look for potential key words

During a second reading they can use

contextual clues to help determine which of the identified words are actually

operational or procedural indicators.

Systematic exercises of this type can

help them focus on semantic hints to discover which operations or procedures

are required for a solution.

additional list of potentially misleading key words with an asterisk.

A. Problem:

Remediation!

needed to soive the problem.

Category II: -Problems with Syntax

As a reminder, the class could compile an

Position of the question sentence and sequence of important data
in the problem statement may cause difficulty in deterwmining the problem’s
mathematical structure.

Children need extensive practice with sets of word problems that
have similar mathematical structures, but vary considerably in their wording.

Teachers can provide practice sets where the position of the question sentence
is varied systematically. For example:

- In how many hours can Joe and Bill paint a garage working
together, 1f Joe can do the entire job alone in 15 hours,
and Bill can do the entire job alone in 1l hours?

- Joe can paint a garage in 15 hours. In how many hours can
Joe and Bill paint the garage working together, if Biil
can paint it alone in 1l hours?

- Joe can paint a garage in 15 hours. Bill could paint it
in 11 hours. How long would it take them to paint the garage
if they worked together?

Research indicates that children tend to have more difficulty with
problems when the data are presented in an order that is different from that

Students can be asked to generate sets of word

prablems that use the same data and require the same answer, but which vary

the order of the data in the problem statements.

come up with the following set:

- A grocer bought 17 dozen pears for $14.65. If 5 dozen spoiled,
at what price per dozen must he sell the remaining pears to
make a profit equal to 3/5 of the total cost?

A pgrocer wished to make a profit of 3/5 of the total cost of

his fruit. If 17 dozen pears cost him 514.65, and 5 dozen
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spoiled, for how much per dozem must he sell the remaining

pears to realize the desired profit?

In a crate containing 17 dozen pears, a grocer finds that 5

dozen have spoliled. How much per dozen should he charge for
the remaining pears to make a profit of 3/5 of his total

cast,

if the crate costs $14.657

For example, a student might



As an additional activity, students can be asked to construct several more
problems which use the same data, but which ask different questions. Onpe
example is the following:

- In a crate that contains 17 dozen pears, a grocer finds that
5 dozen have spoiled. He sells the remaining pears for $23.44,
which will give him a profit of 3/5 of the original cost of
the crate. How much per dozen did the pears in the original
crate cost the grocer?

By pooling the contributed sets of problems from the members of the class, the
teacher can construct activity sheets which require students to identify which
problems are syntax variations of each other.

B. Problem: Students may have difficulty interpreting signs, symbols and
special mathematical notation.

Remediation: When reading word problems, students should be encouraged to use
the words that provide the meaning of sywbols and notation, rather than the
symbols and notation themselves. Word problems which use English words
instead of numerals, such as "two hundred twenty-five"” instead of "225”, can
be rewritten using the numerals instead of their English counterparts.
Teachers should frequently test knowledge of symbols and notation on tests,
quizzes, and during class discussions.

C. Problem: Students may center their attention on the numbers present in a
word problem too early, and perform random computations without thinking
through which operations are required.

Remediation: To help students avoid premature centering on numbers, the
teacher could have them rewrite the problem without numerals. For example:

With numbers: A jogger rumns along the edge of a field
going north for 12 minutes at 10 km/hr,
and then runs east for 1/2 hour at 14
km/hr. If she runs in a straight line
back to where she gtarted, at what speed
must she travel to reach home in 28 minutes?

Without numbers: A jogger runs north at one rate, and
then east ar another rate. If she runs
in a straight line back to where she
started, at what rate must she travel to
reach home in a given time?

This second version is one of several ways of rewriting the problem without

the numerals. The numberless version could clarify the overall situation and
help students see this as a rate problem involving the Pythagorean theorem.
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D. Problem: Word problems which contain many pronouns can cause confusion.

Remediation: During a second reading of a problem statement, students should
be encouraged to substitute nouns for pronouns if they find the action of the
problem confusing.

' . . . Henry Sam )
- Henry's guinea pig has a baby whlch'he\named Sam. \He_welghed .2 kg

Sam
at birth. Henry observed -that “he_gained .2 kg every five weeks. At

) Sam
that rate, how many kilograms will e weigh after six months?

E. Problem: S8Students may have difficulty in distinguishing between relevant
and irrelevant facts in a problem statement. Problem statements which are
particularly long often cause difficulty as well, in that students can get
overwhelwed with surplus information.

Remediation: Students should be encouraged to focus their attention on the
action of the problem, centering on important verbs. Listing facts in their
praper relaticonships- (particularly in the form of short, mathematical
sentences which can later be combined into equations) is a very useful
activity. Students can be given sets of word problems and asked to try to
identify all extraneous information. In the following example, the student
crossed out the excess information, in an effort to simplify the problem.

- Bobls—uncle Bill uses five™ % o8- bottles of concentrate to
make 8, "t#2-Llitre bottles of root beer. How wmany 1/2 litre
bottles of root beer can he make with twelve “S—ez. bottles
of concentrate?

Having the student read the above problem statement out loud, without the
crossed~out words, can make the problem's structure more apparent. Note that
the students may have to reread the problem statement several times to be able
to decide which words are really not needed.

Students should also be given practice in constructing their own problems
which have the same mathematical structure, but contain different amounts of
extranecus information, have different sentence structures, or vary in length.

Category 1II1: Problems with Context
A. Problem: Students may have difficulty perceiving similarities in the

mathematical structure of word problems which have different contextual
embodiments. .

Remediation: Students need to be shown how problem settings can be modified o
without changing thé mathématical structure of the problems. Modifications in ]
context can be across the dimensions concrete- abstract, factual-hypothetical,

or real-imaginary. The following four problems (Caldwell and Goldin, 1979)

illustrate variations of context using combinations of the concrete-abstract

and factual-hypothetical dimensions.
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~ There is a certain given number. Three more than twice this
given number is equal to 15. What is the value of the given
number? (Abstract-factual)

- There is a2 certain number. If this number were 4 more than
twice as large, it would be equal to 18. What is the number?
(Abstract-hypothetical)

~ Susan has some dolls. Jane has 5 more than twice as many,
so she has 17 dolls. How many dolls does Susan have?
(Concrete-factual)

- Susan has some dolls. If she had 4 more than twice as many,
she would have 14 dolls. How many does Susan really have?
(Concrete-hypothetical)

Problems can be modified along the real-imaginary dimension by having students
construct problem sets with given themes or subjects, such as their income and
expenditures for a week (real) or problems involving fanciful characters such
as dragons.

Caldwell (1980) has suggested that students could be asked to fill in
missing words in problem statements, so as to change the context. For
example:

= Judy has 27 « She 5 and then __14. How many
does she have in all?

Activity sheets which require students to identify problems in different
contexts with similar mathematical structures could provide a useful follow-up
activity.

Category IV: Problems with Interpretation

A. Problem: Students may not understand processes used to read and interpret
a graph. '

Remediation: Students should be exposed to word problems which make use of a
graph to summarize information. Conversely, students should be given practice
problems which require a graph as part of the solution, or for which a graph
may help conceptualize a solution. When a problem uses a graph, the student
should read the title of the graph to determine the kind of information that
the graph proavides. The variables described on the axis or parts of the graph
should be listed, with a brief description of how they are related. In some
graphs, the units of measure may be spaced on different scales, so this should
be checked carefully. How to read a graph is an excellent topic for a
bulletin board. The diagram below makes use of a pocket of problems which
make use of gpraphs. The teacher can change the problems weekly, or use
student-generated problems.
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READING GRAPHS
TITLE "*—-—————__*_______________7 The Relationship of
Temperature and Time for
VARIABLES 95¢ June 5, 1982
Temperature 0¢
85}
]
i =
Time E 80l
UNITS % 754
S
Degrees & 704
[_q
65.
Ho
e = e e e T S S S S
8§ 9101112 1 2 3 4 5 6 7
TAKE ONE/ =~ TIME
B. Problem: Students may not know how to read tables.
Remediation: Although calculators have replaced the use of tables in many

cases, there are still times when the ability to read required data from
tables is essential. Students should be exposed to many types of tables and
given practice finding required information. As an activity, students can be
asked to write a description of how to use the table, as if their description
was to be read by a younger student. The description should include
information about the headings and entries, and at least one example. A
bulletin board can be constructed with student-generated problems based on
data available from tables collected from unewspapers, magazines and old texts.
C. Problem: Students may not know where to find additional information to
help them solve difficult problems.

Remediation: Students should be thoroughly familiar with the location and use
of the various parts of their text, such as the index, appendix, and glossary
(to look up definitions they may have forgotten). Reference texts, additional
tables, study guides, etc. should also be made available.

Summarz

As the above list of reading problems indicates, many students are poor
problem solvers in mathematics due to the lack of language processing skills.
When reading deficiencies are discovered, teachers may take steps toward
remediation. However, the best plan is systematically to provide reading
_instruction in wathematics throughout a child's academic_career. The _ -

activities suggested above are just some of the many ways that teachers can
help students learn the importance of reading word problems slowly and
carefully, with an attitude of aggressiveness and attention to detail. Once
these adjustments in reading rate and purpose are made, students should be
able to approach word problems in mathematics with increased confidence and
ability.
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Leading Problem Solving in an
Elementary School Classroom

by

Kil S. Lee
University of New Orleans

In order to develop a successful problem-solving program, identifying
appropriate problems for students at different ability levels is important.
If a question is too easy, it is not a problem for a student and if the
question is too difficult, a student will usually not even attempt to solve
it. A problem can be solved only after a problem solver is willing and able
to mobilize his or her resources to solve the problem.

Identifying appropriate methods of solving problems for students at
different ability levels, rather than different problems, is often a challenge
for a teacher. For example, the following problem could be posed for an
algebra student: The sum of Susan's age and Kenneth's age is 21 and Susan is
five years older than Kenneth. BHow old is Susan and how old is Kenneth?

Algebra students would most likely solve this problem using simultaneous
equations:

x +y=21 X +y =21
x-y=25 =) x=-y=5
2y = 16
y= &
x - 8=235
x =13

. —_ ——— e —

can be tauvght to students who are at the concrete operational stage and
without the methods of algebra. A way of helping elementary school children
solve the problem will be presented in the following paragraphs.

Elementary school children experience anxious feelings when they are
faced with some word problems. In order to reduce their anxiety, they often
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immediately write down numbers from the statement of the problem and perform
an operation between the numbers "21 + 5 = 26, 26 years old"; "21 - 5 = 16
years o0ld." One student wrote

21
3

and asked her teacher, "What do I do? Do I add?”

Thus it is important in problem solving to have some rules or methods
which can help one work confidently toward a solution. In_How to Solve It
(1957), Polya described certain rules and methods (called heuristics) which
are helpful in sclving problems. But Polya's list of heuristics is not in an
appropriate form for elementary school children because of the number, the
language, and the complexity of the heuristics. The following list is adapted
for elementary school children from Polya's list of heuristics.

Heuristics for Elementary School Children

I. Understanding the problem
(A) What is involved in the problem?
(B) What are the relationships among the involved items?
{C) What are the questions to be answered?

I1. Making a plan
(A) Can drawing a picture help?
(B) Can making a chart help to solve it?
(C) Consider special cases and look for a pattern.
(D) Consider one condition and then add another condition.
(E) Have you solved a similar problem?

III. Carrying cut the plan
(A) Carry out the plan
(B) Check each step

1IV. Looking back
(4) 1Is your answer reasonable?
(B) Try to find another way to solve it.
(C) Make a similar problem.

In the early stages of teaching problem solving, teacher demonstration of
problem solving by conscientious use of heuristics is essential. "At first,
we must understand the problem: What are we talking about?...The problem
involves the ages of two persons, Susan and Kenneth. What are the
relationships between the ages of Susan and Kenneth?... Susan is five years
older than Kenneth and the sum of the ages of Susan and Kenneth is 21 years.
Can you give an example where Susan is five years older than Keoneth?" If
there are correct responses, it is fine but if there aren't any responses, the
teacher can give an example: If Susan is six years old, how old is Kenneth?
At this point, some students will say, "Kenneth must be one year old.” The
teacher should elicit more examples from the students. This is simple enough
that everyone can give an example except perhaps those who seldom pay
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attention to the class. At this point, it 1is not wise to ask questions of the
students who most likely cannot answer correctly. Rather, the teacher would
ask for examples from the students who are capable of giving correct examples
and would sit near the student who does not pay atteantion so that that

student would feel that he might be the next one to be called upon.

The teacher should give enough opportunities to other able students until the
uninterested student could give an example. Then the teacher could ask: "You
know that the problem says that-Susan is five years older than Kenmeth. Now,
1f Susan is six years old, how old should Kenneth be?" When the uninterested
student answers correctly, the teacher should give a positive response which
would encourage the student to be a part of the problem-solving activity.

Similarly, discuss the second conditicn of the problem: The sum of
Susan's age and Kenneth's age is 21. This discussion will provide an
opportunity for all the students to understand the problem clearly including
the previously uninterested students. The students will now be ready to
answer questions, regardless of whether they are sure they are correct.

"Now, what are we looking for?...Susan's age and Kenneth's age." One
student remarked, "Gee, it is a hard problem. If the problem just said that
Susan is five years older than Kenneth then it is easy." This remark shows
that the student comprehends the problem now. The teacher can point out that
"it is difficult because we must consider two conditions at the same time.

So let's consider only one condition for awhile and then add the other condition
later.” We could start with the condition that Susan is five years older than
Kenneth. The teacher then elicits examples and records them on the board.

Susan's ape Kenneth's age

6

5
10
18
12
11
13
15
17

—_ Pt
f RO 00NN D

F

Usually, the "good students” will begin to give examples, but the
condition 1s simple enough and has been discussed in understanding the
problem, so virtually everyone in the class will give examples. Hence the

— — — _blackboard may be covered with_examples_for the one condition. _Then_the _ —
second condition should be considered: the sum of Susan's age and Kenneth's
age 1s 21. The class begins to add Susan's age and Kenneth's age for each
example on the board. Eventually, they will find the correct solution.
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Susan's age Kenneth's age Sum
[ 1 7
5 0 5
7 2 9
10 5 15
19 14 33
12 7 19
11 6 17
Li3 8 21 |
15 10 25
17 12 29

- - -
- - n

Neone of the students will be embarrassed because his or her predicted
example is incorrect because there are so many examples on the board that no
ane would have noticed whose example is correct and whose example is
incorrect.

After finding the solution, the teacher should point out the importance
of understanding the problem which not only involves reading the statement
carefully btut also thinking about examples for each condition. The teacher can
point out that "if you were solving this problem by yourself, it would be
helpful if you would arrange your examples with one condition in an orderly
way." For examples, you could write

Susan Kenneth

9
10
11
12
13
14
15
16

— 0O\ 00~ O P

P
[

and check a few of the sums of the ages

Susan Kenneth Sum
9 4 13
10 5 15
11 &
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Susan Kenneth Sum

12 7
13 3 21
14 9 23
15 10
16 11 27

Then you could find a way in which your examples would give you the correct
answer without checking all the situatioms. However, in the author's
experiences, children would often find the sums for all the cases even after
they found the answer. The -teacher can also present alternate ways of solving
the problem so that students will recognize that there are many other ways of
solving problems and they will modify learned methods to ways that are most
comfortable for them. An example of a way some students solved the problem is
as follows:

10 9 12 13
:2 +4 +7

+8
15, 13 19y 20,/

These children recognized that the way to find the correct answer is by
first checking two cases and then using the sums to lead to the solution.

In order to develop a successful problem-solving program, a teacher's
fFirst task is to identify problems which are not too easy and not too
difficult, problems the students will be able to solve only after they
mobilize their resources. Therefore the teacher must consider the students'
mathematical background as well as their cognitive development levels.
Second, a teacher must demonstrate, by placing himself or herself in the
student's place, how conscientious use of heuristics can help to solve
problems. Third, a teacher must provide many opportunities for students to
engage in problem-solving activities so that each student will experience
success in solving problems after hard work. The excitement of successful
problem solving may be imprinted on some of the students' minds and it may
help to develop a character of curiosity and inquisitiveness for their
lifetime. These characteristics are common to many great thinkers.
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Problem Solving for the High School
Mathematics Student

by

Cheryl Kantecki and Lee E. Yunker
West Chicago Community High School

An effective method for capturing the interest of students is to involve
them in problem solving. This requires reaching beyond the realm of the
textbook to expose students to a variety of problem-solving situations. Aside
from capturing student interest, problem solving provides opportunities to
develop mathematical skills, leads to new mathematical ideas, and motivates
students to research mathematics. More importantly, problem solving
stimulates imagination and allows students to exercise creativity.

The National Council of Supervisors of Mathematics Position Paper on
Basic Skills defines problem solving as the process of applying previously
acquired knowledge to new and unfamiliar situatioms. The word 'process"
implies that there are many facets to problem solving, and indeed there are.
Problem solving entails more than merely arriving at a conclusion; problem
solving entails the entire process of analyzing a problem, synthesizing, and
evaluating.

The intent of this article is threefold. First, to identify
problem-solving strategies and illustrate their uses with specific examples.
Second, to suggest motivational techniques to involve students in problem
solving. And, third, to provide the reader with a list of interesting and
challenging problems along with their answers.

Major Problem—Solving Strategies

There is a wide varlety of problem-solving strategies that could be
mentioned as being important. This article will confine itself to six
strategies that have wider application and can be easily employed by high
school students. The six strategies are: elimination, modeling, reducing to
a simpler case, using tables, guess and check, and patterns.

Elimination:

The elimination strategy is basically one of locking at all the possible
solutions and eliminating, one by one, those that are not possible. Logic
problems provide examples for the use of the elimination method.
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The WHO'S WHO Problem:

Four married couples belong to a golf club.
Sally, Joan, and Ann.

the folleowing clues.

The wives' names are Kay,
Their husbands are Don, Bill, Gene, and Fred. Examine
They should help you decide who is married to whom.

- Bill is Joan's brother.

- Joan and Fred were once engaged, but "broke up" when
Fred met his present wife.

Ann has two brothers, but her husband is an only child.
- Kay is married to Gene.

Solution:

A chart like the one below lists the possible solutions.
eliminate, one by one, the false solutions.

The clues help

KAY SALLY JOAN ANN
DON X X YES X
BILL X YES X X
GERE YES X X X
FRED X X X YES
Modeling:

The modeling strategy is one of creating a model of the problem to be

solved. This model may be an actual physical medel or just a diagram on
paper. In any event, the model helps the student see his way through to the
solution.

THE HANDSHAKE Problem:

There are 12 people at a party. If everyone shakes hands with everyone
else at the party, how many hand shakes take place?

Solution:
- /o -__;‘:“
IIRATESE KA
SR ¢, & o A 5 <.
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RIS V-‘q‘*\'/
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The hand shakes can be represented by the sides and diagonals of the
dodecagon.

Number of Sides = 12 =
Number of Diagonals = 34 n_(n-3)
.

Number of Hand Shakes = 66

Reducing To A Simpler Case:

This strategy is employed when the problem appears to be too large to
comprehend or when trying a few of the cases may hold a hint to the larger
solution.

THE LOCKER Problem:

This problem is about a high school and that favorite storage area, the
high school locker.

At Gauss High there are 1000 students and 1000 lockers {numbered 1-1000).
At the beginning of our story all the lockers are closed. The first student
comes by and opens every locker. Following the first student, the second
student goes along and closes every second locker. The third student changes
the state (if the locker is open, he closes it; if the locker is cleosed, he
opens it) of every third locker. The fourth student changes the state of
every fourth locker, etc. Finally, the thousandth student changes the state
of the thousandth locker. Which lockers will remain open after the thousandth
student changes the state of the thousandth locker? [From: Columbus Project
ESEA, Columbus, Montana.)

Solution:

For our purpose we shall investigate the state of the first sixteen
lockers as students 1 through 16, open or clegse them. In the table below, let
C and O represent closed and open lockers respectively. Student #1 begins by
opening every locker. Thus in Row 1 of the table an "0" is placed beneath each
locker number. Student #2 then closes every second locker. Thus in Row 2, "C"
is placed beneath lockers 2, 4, 6, 8, ...16. Next, student #3 changes the
state of every third locker; he closes locker number 3, opens number 6, closes
number 9, opens number 12 and closes number 15. Hence in Row 3, "C" is placed
beneath locker 3, 9, and 15 and "0" beneath 6 and 12. This process continues
until student #l6 changes the state of locker 16. Finally, from the table it
is evident that lockers 1, 4, 9 and 16 are left open. Each of these locker
numbers are perfect squares. Hence the solution: the lockers whose numbers
are perfect squares are open.

Locker # 1 2 34 567 89 10 11 12 13 14 15 16
Student #

10000000000 O O 0 O 0 O
2 ¢ € ¢ ¢ ¢ C c c
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Locker # 1 2 34 567 89 10 11 12 13 14 15 16

3 C 0 C 0 C
4 0 0 C 0
5 C 0 0
s 6 C 0
t 7 C 0
u 8 C C
d 9 0 .
e 10 C
n 11 C
t 12 C
13 C v
# 14 C
15 C
16 0

Using Tables:

Tables are useful devices for organizing and keeping track of
information. )

THE HONEST BROTHERS Problem:

One of five brothers had broken a window. John said, "It was Henry or
Thomas.” Henry said, "Neither Earnest nor I did it.” Thomas said, "You are
both lying.” David said, "No, one of them is speaking the truth, but not the
other.” Earnest sald, "No, David, that is not true.” Three of the brothers
always tell the truth, but the other two cannot be relied on. Who broke the
window?

Solution:

In the table, the headings at the top indicate the assumed guilt of each
brother. The headings te the left indicate the truth or falseness of each
statment. T and F represent true and false respectively. For instance, if
John were guilty (Column 1) John's statement would be false, Henry's true,
Thomas' false, David's true and Ernest's false. Columns 2 through 5 are
completed in the same way. Upon completion, the only column which indicates
that three brothers were telling the truth is column 3. Therefore, Thomas
broke the window.

John Henry Thomas Ernest David
John F T T F F .
Henry L T F T F T
Thomas F F F T F
David T T F F T
Ernest F F T T F
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Guess and Check:

Guess and check is a problem-solving strategy in which the problem solver
actually guesses a solution and then checks to see if the solution satisfies
the conditions of the problem. The experienced problem solver uses all of the
information at hand to arrive at a reasonable solution.

THE ORDERED DIGITS Problem:
0 1 2 3 4 5 6 7 8 9

In the ten cells above inscribe a ten digit number such that the digit in
the first cell indicates the total number of zeros in the entire number; the
digit in the cell marked "1" indicates the total number of 1's in the number,
and so on to the last cell, whose digit indicates the total number of 9's in
the number. Zero is a digit, of course. The answer is unique.

Sclution:

In the list below, an initial guess is made. Then a series of gradual
changes are made until the correct solution is cobtained.

0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 1
8 0 0 0 0 0 0 0 1 0
8 1 0 0 0 0 0 0 1 0
8 2 | 0 0 0 0 0 1 0
Answer 6 2 1 0 0 0 1 | o 0 0

Pattern:
Searching for patterns can be an extremely helpful problem-solving

strategy. Amazingly, problems which appear Lo be relatively difficult can in
fact be quite simple when patterns are recognized.
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THE CHINESE DINNER Problem:

Every 3 guests used a dish of rice between them, every 4 a dish of broth,
and every 2 a dish of weat. There were 65 dishes in all. Can you figure how
many guests there were?

Solution:

In order to "meat" the conditions of the problem the number of guests
must be divisible by 12. We create the following tabie in which R, B, M
represent the total number of required dishes of rice, broth, and meat,
respectively.

# of Guests R B M. Total # of Dishes
12 4 3 6 13 increase of 13
24 8 6 12 26

Since each increase of 12 guests will increase the total number of dishes
served by 13 and there were 65 dishes served, there must have been 60 guests.

Motivations for Problem Solving

Often students need to be motivated to extend themselves in doing
problems which are not going to be covered on their next test even though the
techniques learned may be helpful in solving those test questions. The
following suggestions have proved helpful in getting students involved in
learning and using these problem-solving strategies.

The Weekly Challenge Problem. A problem may be presented on Monday with
the teacher accepting solutions until Friday. The teacher keeps a weekly
record of each student's correct solutions on a large chart on the bulletin
board. Each week that a correct solution is turned in, the student gets a
star behind his name. This chart is always there for all students to see and
this chart soon motivates competition among the students in the class, each
trying to outdo the other.

The Weekly Extra-Credit Problem. Each week a problem may be presented to
the students for extra credit (something many students ask for). Then the
teacher can use the extra-credit polnts at the end of each grading period to
ad just the student's grade in whatever way he deems appropriate.

As a result of these efforts, the parents even get involved. Students
will say, "Can I have an extra copy for my father or mother?” Or, the parent -
will see you and say, "Where do you get those problems?” This then gives you a
gpreat opportunity to explain to parents about the new emphasis in our

profession on teaching problemsolvings

Problems to Motivate and Challenge

The following problems are ones that we have used with our students.
These are problems that we feel ocffer students good problem-solving situations
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in which they can exercise creative thinking and on which they can use one or
more of the strategies mentioned above. The original sources for these
problems are unknown to us but we thank their authors, whoever they are, for
offering such fine problems for us to share with others.

Problem-Solving Exercises:

1. Miss Young has her 18 students seated in a circle. They are evenly
spaced and numbered in order. Which student is directly opposite...
a. student number 1? b. student number 5?7 ¢. student number 187

2. Mr. Evans seated his students in the same way as Miss Young's. Student
number 5 is directly opposite number 26. How many students are in
Mr. Evan's class?

3. Mrs. White teaches Phys. Ed. She had her students space themselves
evenly around a circle and then count off. Student number 16 is
directly opposite number 47. How many students are in Mrs. White's
class?

4. EXTENSION: A huge number of boys are standing in a circle and are
evenly spaced. The 7th boy is directly opposite the 7%91st. How many
boys are there altogether?

5. &Steve, Jim, and Calvin are married to Beth, Donna, and Jane, not
necessarily in that order. Four of them are playing bridge. Steve's
wife and Donna's husband are partners. Jane's husband and Beth are
partners also. No married couples are partners. Jim does not play
bridge. Who is married to whom?

= e

[2[s]"]

(APRT 7

On the desk calendar above, the day can be indicated by arranging the
two cubes so that their front faces give the date. The face of each
cube has a single digit, 0 through 9. If the cubes can be arranged so
that their front faces indicate a date 01, 02, 03, ... 31, find the four
digits that cannot be seen on the left cube and the three on the right
cube.

7. Find the smallest number which divided by each of the integers 2, 3, 4,
5, 6, 7, 8, 9, and 10, will give, in each case, a remainder which is 1
less than the divisor.

8. Divide a circle into four equal areas using three fences of equal

length. Do not use your fences around the perimeter or on top of each
other.
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9.

10.

11.

12.

i3,

14,

15.

lé.
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Fill in the following figure with the digits 1-8 in such a way that no
two consecutive numbers are in boxes which touch at a point or side.

An exam has five true-false questions.

a. There are more true than false answers.

b. No three consecutiwe questions have the same answer.

¢. The students know the correct answer to problem number 2.

d. Questions number 1 and number 5 have opposite answers. From the
information above, the student was able to determine all the correct
answers. What are they?

A man went into-a hardware store and asked the clerk how much 1 cost.
The clerk sald 25 cents. He asked how much 10 would cost, and the clerk
sald 50 cents. “Good,"” he replied, “I'll take 1025." He then pald the
clerk $1.00. What did he buy?

If it cost a nickel each time you cut and weld a link, what is the
minimum cost to make a chain out of 5 linka?

A goat is tied at the corner of a 20m x 40m barn with a 50m rope. If it
can graze at any spot outside of the barn to which its rope can reach,
what is the size of its grazing area?

Jim has a collection of records. When he puts them in piles of two, he
has one left over. He also has 1 left over when he puts them in piles
of 3 or piles of 4. He has none left over when he puts them in piles of
7. What is the least number of records he may have?

Golden Chain Problem: A Chinese prince who was forced to flee his king-
dom by his traitorous brother sought refuge in the hut of a poor man.
The prince had no money, but he did have a very valuable golden chain
with seven links. The poor man agreed to hide the prince, but because
he was poor and because he risked considerable danger should the prince
be found, he asked that the prince pay him cne link of the gold chain
for each day of hiding. Since the prince might have to flee at any
time, he did not want to give the poor man the entire chain, and since
it was 8o valuable, he did not want to open more links than absolutely
necessary. What is the smallest number of links that the prince must

open in order to be certain that the poor man has one link on the first
day, two links on the second day, etc.?

A man's age at death was 1/29th of the year of his birth. He was alive
in 1900. How old was he in 1900.



17.

18.

19.

20.

21.

22.

23.

24.

25.

Slow Horse Race: Two knights seek the hand of Princess Priscilla in
marriage. Each boasts that he owns the fastest horse in all the land.
So the king arranges a horse race. The king, however, is not eager to
have his little girl marry, and he is especially unimpressed with her
two sulitors, so he decrees that the winner of the race, who will
receive the princess's hand, will be the knight whose horse crosses the
finish line last. It would seem that the race would never get under
way; neither horseman would want to ride out ahead of the other. But
Princess Priscilla, eager for marriage, thinks of a way to outwit her
over-protective father. She whispers instructions to the two knights
that ensure that the race will be run and that it will be fsir. What
did she tell the two knights?

Nines: Using only six nines, write a number that equals 1QO.

It is traditional in many families at Christmas time for each family
member to give a gift to each of the other members. How many gifts
would be given if there were 10 family members? How about for your
family which has ___ members? -

Sally has some change in her purse. She has no silver dellars. She
cannot make change for a nickel, a dime, a quarter, a half dollar, or a
dollar. What is the greatest amount of money she can have?

1f & clock strikes six times in five seconds, how many times will it
strike in ten seconds.

How much will it cost to cut a log into eight equal segments, if cut-
ting it into four equal segments costs 60 cents?

Mervin was Calvin's best friend and the executor of Calvin's will when

he passed away. Mervin rode his horse over to Calvin's ranch to settle
the estate. Calvin had 17 horses that were to be divided among his
family in the following way. Calvin's wife was to receive 1/2 the
estate, his son 1/3, and his daughter 1/9. This posed a problem for
Mervin. He did not want to kill any of the horses and yet he must divide
the estate according to the will. How did he accomplish this task?

Herb the Hobo was attempting to c¢ross a railroad bridge. When he was
3/7 of the way across he heard a train coming behind him. He ran to the
far end and hopped off just as the train got to him. Later he calcu-
lated that he could have run to the other end of the bridge and still
have survived. If the train was going 35 kph, how fast did Herb run?

In a survey of 25 college students at the University of Calgary, it was
found that of the 3 newspapers, Calgary Herald, Calgary Sun, and the

Globe and Mail, 12 read the Herald, 11 read the Sun, 10 read the Globe

and Mail, 4 read the Herald and the Sun, 3 read the Herald and the Globe
and Mail, 3 read the Sun and the Globe and Mall, and 1 person reads all 3.

a. HRow many read none of the newspapers?
b. How many read the Calgary Herald alone?
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¢. How many read the Calgary Sun alone?

d. How many read the Globe and Mail alone?

e. How many read neither the {algary Herald nor the Calgary Sun?
f. How many read the Calgary Herald or the Calgary Sun or both?

26. A well is 10 feet deep. A frog climbs up 5 feet during the day but
falls back 4 feet during the night. Assuming that the frog starts at
the bottom of the well, on which day does he get to the top?

27. Gina and Tom raise cats and birds. They counted all the heads and got
10. They counted all the feet and got 34. How many birds and cats do
they have?

28. The security guard at a bank caught a bank robber. The robber, the
teller, and a witness were arguing when the police arrived. This was
what the police learned in the confusion.

a. The names of the 3 men were Brown, Jones, and Samith.

b. Brown was the oldest of the three.

¢. The teller and Jones had been friends for many years.

d. Brown was the brother-in-law of Lhe witness.

e. Smith graduated from high school 5 years earlier than the robber.
Who was the robber? Who was the teller? Who was the witness?

29. How can 12 matches be arranged to make 6 regions of equal area?
30. The Editor of the Harvey School annual, The Harvey Hijinx, knows that

2985 digits were used to print the page numbers of the annual. How
many pages were in the book?

31. In the Calgary Herald, the sports writing staff picked the winners for
the first weekend of play in the Canadian Football League's 1982 foot-
ball season. The picks are as follows:

Sportswriter "A" Sportswriter "B" Sportswriter "C"
Edmonton Ottawa Calgary
Montreal B.C. Edmonton
Calgary Edmonton Winnipeg
Saskatchewan Montreal Otrtawva

No one picked Toronto to win. Who plays on the first scheduled weekend?

32. A certain highway was being repaired, so it was necessary for the
traffic to use a detour. At a certain time, a car and a truck met in
this detour which was so narrow that neither the truck nor the car was
able to pass. HNow, the car had gone three times as far into the detour
route as the truck had gone, but the truck would take three rimes as
long to reach the point where the car was. If both the car and the
truck can move backward at one third of their forward speed, which of

—————— —— —thesetwo vehicles shouldback upIin otder to permit both to travel
through the detour in .he minimum amount of time?

33. The shuttle service has a train going from Washington to New York City
and from New York City to Washington every hour on the hour. The trip
from one city to the other takes 4 and 1/2 hours and all trains travel
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34.

5.

36.

16.
L.
12.
13.
l4.
15.
ie.
17.

at the same speed. How many trains will pass you in going from
Washington to New York City?

What do the following words have in common: Deft, First, Calmness,
Canopy, Laughing, Stupid, Crabcake, Hijack.

Supply a digit for each letter so that the equation is correct. A given
letter always represents the same digit.

ABCDE

x 4

EDCBA

A man travelled 5000 kilometres in a car with one spare tire. He rotated
tires at intervals so that when the trip ended each tire had been used
for the same number of kilometres. How many kilometres was each tire
used?

ANSWERS

a. 10 b. 14 ¢c. 9

(Note: the difference between the numbers of directly opposite persons
is always the same.)

16-5=11. Thus 11x2=22, the number of pupils in Mr. Evan's class.

62 pupils.

1568 boys.

Steve and Jane; Jim and Beth; Calvin and Donna.

Left cube: 0, 7, 8, and 6 or 9. Right cube: 0, 1, 2.

2519

Or answers may vary.

T, F, T, T, F (Kay is information in part C).
House Numbers.

10 cents.

21159 Sq. m.

49

1 Link (The 3rd link forms either end).
15 or 44

Priscilla said, "switch horses.”
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18.

15.
20.
21.
22.
23.

24.
25.
26.
27.
28.
29.

30.
31.

32.
33.
34.
35.
36.

60

99 + 99
39
90, second ansyer varies.
$1.19 (4 pennies, 4 dimes, 1 quarter and 1 half-dollar).
11 times.
$1.40.
Mervin donates his horse to the estate. Then the wife gets 9 horses,
the son 6 horses and the daughter 2 horses (9 + 6 + 2 = 17). So Mervin
then takes his horse back and all are happy.

5 kph.
a. 1 b. 6c. 5d. 5e. 6 f. 19.
On day 6.

7 cats, 3 birds.
Robber is Jones; Teller is Brown; Witness is Smith.

AW —
VAV 21,

1023 pages.

Montreal - Winnipeg, Saskatchewan - Ottawa, Toronto - Edmonton, B.C. -
Calgary.

The car.

9.

Three consecutive letters of the alphabet.

A=2; B=1; C=90; pb=7; E=8.

4000 kilometres.
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Visualization: A Problem-Solving
Approach

by

Barbara Moses
Bowling Green State University

The teaching of mathematical problem solving is as complex as the
problem-solving process itself. A myriad of questions faces the mathematlcs
educator attempting to improve the problem-solving performance of students of
all ages: How do I motivate the topic? How do I grganize the material? Are
there certain strategies which are of primary importance? Should problem
solving be a group activity? What is unique about problem sclving that makes
it more difficult to teach and learn?

Much research has been completed concerning the analysis of the nature of
problem solving. Although researchers adopt thelr own terminclogy, there
appears to be some consensus concerning the stages in the problem-solving
process. Krutetskii (1976) offered the following synopsis of this complex
process:

Apparently, three links or stages can always be traced in the
solution of any problem (from the elementary to the very
complicated). The solution of any problem seems to begin with the
acquisition of initial facts, initial information about the problem,
with thorough reflection, attempts to understand, and mastery. Then
comes the solution proper, as a stage of processing or transforming
the facts acquired for the purpose of obtaining the desired result.
And finally, both the process and the result of the solution always
leave some trace in the memory, somehow enriching a person's
experience. (p. 183)

In other words, the three stages of the problem-solving process involve
understanding the problem, planning an attack and carrying out that plan, and
finally looking back and assimilating the knowledge gained. Spelling out this
process points out the difficulties which arise when trying to teach
mathematical problem solving. How do you teach a student how to understand a
problem? How do you help a student plan an efficient attack? How do you
encourage a student to learn from his mistakes, to generalize the solution,
and to commit the solution to memary? Obviously, the task is not easy.
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Helping a student understand a problem involves more than helping the
student understand the individual words. 1In one study of fifth grade
students' understanding of mathematical problems, the Cloze procedure was used
to judge readability of a collection of ten problems. The problems were
judged to be quite readable {(at the fifth-grade level). Individual interviews
were conducted with fifth-grade students, asking them to explain certain
words. There were no glaring errors in the comprehension of the words. Yet
students still had difficulty understanding the problems. If a student -
understands each word of a problem, what can the teacher do to help the
student understand the problem?

Helping a student plan an attack is no less complicated. One of the
unique characteristics of praoblem solving is that there is no algorithmic,
step-by-step procedure for finding the most efficient solution. One
fifth-grade student was feverishly working on a problem that had been assigned
to the whole class. A hint for attacking the problem was given to the class,
and part of the class benefited from the hint. However, this particular
student seemed even more confused after having received the hint. "I don't
see how that will help me get the answer,'" he fumed. He ignored his
classmates and continued on with his own ideas. Suddenly, five minutes later,
he raced up to the front of the room and asked for a point of clarification
about the problem. "I got it," he whispered. The initial hint had not helped
him because it was leading to a plan of attack that was not consistent with
his view of the problem. How does a teacher help 30 students with different
perspectives plan efficient strategies?

The final stage, generalizing the solution and assimilating the
knowledge, appears to be a very individualized process, yet we expect the
teacher to encourage this behavior. What types of actions occur in this third
stage of the problem~solving process? How can a teacher help 30 students to
assimilate this new knowledge when the previous knowledge structure for each
individual student is so remarkably different?

This brief lock at the three stages of the problem-solving process points
aut the fact that problem-solving behavior is very individualized. Each
student approaches a given problem situation with his unique background,
knowledge structure, inclinations, and cognitive styles. The student then
reads the problem and attacks it based on his perspective of the problem.
Multi-digit addition exercises, division of fraction exercises, subtraction
with renaming exercises, and so on, can all be solved by step-by-step
mechanical procedures; problem-sclving situations cannot. The uniqueness of
problem selving as a mathematical activity is that it is so very dependent on
the problem solver. The major similarity between problem solving and, other
mathematical activities is that continual practice improves performgnce. -

— . _Polya (1957) recognized the importance of practice and suggested that the way
to improve problem-solving performance—was-by doing problems. He concluded:

Solving problems Is a practical skill like, let us say, swimming.
We acquire any practical skill by imitation and practice... Trying
to solve problems, you have to observe and to imitate what other
people do when solving problems and, finally, you learn to do
problems by doing them. (p. 4-5) - -
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Working through the three stages of the problem-solving process in
problem situation after problem situation does indeed improve problem-solving
performance. The more one practises, the more adept one becomes at seeing
hidden clues, gaining new perspectives and recognizing useless attempts to
solve the problem. But is there some general technique, a way of thinking,
that will induce good problem—solving behavior and encourage students not to
feel frustrated and give up?

Visualization: A way of thinking

Visualization is a way of thinking and not merely a problem-solving
strategy~. It can be wmade to play an important role in each of the three
stages of the problem—solving process. It is NOT a panacea for the classroom
teacher, but it IS a useful mechanism for students to better cope with
difficult problem situations.

Visual thinking is involved in numerous activities, such as when the
gardener tries to imagine the garden before it blooms, when the newly-married
couple rearranges furniture to make the little apartment appear spacious, when
the outfielder in a baseball game knows exactly where to stand to catch the
ball, or when the chemist has some insight into the molecular structure of
some newly-discovered item. It involves sensing, imagining and drawing:

A

It involves dreaming, sketching diagrams, sculpting, manipulating concrete
objects, and closing one's eyes and mentally wanipulating objects. Everyone
does visual thinking to some degree; creative problem-solving performance
could be improved by encouraging more visual thinking in classroom activities.

In order to achieve the creativity and the flexibility that are required
of problem solving, it will be a strong advantage to feel comfortable in a

visual, imaginative mode of thinking.

Visualizing in the classroom

Before proceeding to suggestions for visualizing in mathematical
problem-solving situations, it should be noted that visualization is a way of
thinking and thus should be encouraged in all subject areas. When reading a
passage from some source of literature, students should be encouraged to
conjure up images of the scene. They should be asked to describe it with
words or with pictures or with three-dimensional models. They should be asked
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to act it out. If the main character were to be placed in a given, new
situation, how would she react?

In studying some historical period, students should again be encouraged
to let visual imagery dominate their thoughts. How did the people of the
period dress? How did they feel about the events of the period? How would
these people react if they were living in today's society?

Teachers should create situations and foster imaginal thinking. For
example, stimulate thinking by the following situation: Suppose you were
walking all over a cube. Describe your feelings in words or in a
two-dimensional picture. How would this experience be different from walking
on a sphere?

With practice in all phases of the curriculum, visualization can become
an integral part of all thinking. Asking "what if..." questions encourages
students to become more creative, more flexible, and more aware of different
perspectives in a given situation -- all essential characteristics of the
problem-solving process.

Visualization in the problem-solving process

The encouragement of visualization skills can ald in all three stages of
the problem-solving process. First of all, students can better understand a
problem once they get a mental image of the problem situation. It may help if
they restate the problem with words of their own choosing. It may help to act
out the problem or to draw the situation or to construct some conrete model.
In each case, the problem-solvers have translated the problem via some visual
vehicle to suit their own perspective.

To organize a plan of attack and carry out that plan one may need to
focus in con pictures and diagrams. Seeing is believing, and oftentimes seeing
a pictorial representation of the information in a problem helps one to plan
an attack and points out previously held misconceptions. Jim, the student
mentioned previously who seemed bothered by the hint given in class, described
what had happened when he finally came upon a solution. "The numbers just
didn't add up," he said. "But then I drew a picture and saw that if zero was
a number, I knew how to get the answer. And zero is a number, right?" The
picture had helped Jim to see the problem, to understand it, to recognize his
misconceptions of it, and to hit upon a solution. Due to his own, incorrect
perception of the problem, the given hint did not aid him. He needed to
re-structure his thinking, and this was accomplished most efficiently by
letting Jim create a visual image of the problem situation. It should be
noted that it was Jim's creation and not a representation given by the
teacher. Thus, it fit into Jim's cognitive structure quite easily.

Finally, it is probably apparent that visual imagery is very important in
the generalization of the problem and the assimilation of the knowledge
gained. Having imagined the given situation in one's mind, variations of the
situation seem to flow easily. For example, the following problem was posed
to a group of in-service teachers:
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What is the maximum number of pieces into which a pizza can be cut
with five straight cuts?

An obvious extension is to look at the problem for n straight cuts, where n
is some integral value. But a more interesting extension was posed by one
teacher who suggested looking at a three-dimensional cake, where cuts were
permitted in more than one plane. This problem is much more difficult, but
there was a strong correlation between individuals who had used visual imagery
in the solution of the original problem and those who were successful at the
problem extension.

Thinking in this visual mode appears to aid the typical problem solver at
all age levels. It is not a strategy as such, but s multi-sensory approach to
grasping the problem. By considering a couple of specific examples, a better
understanding of this approach may be gained.

Some specific examples

Consider the following problem situation:

A fireman stood on the middle step of a ladder, directing water into
a burning building. As the smoke got less, he climbed up three
steps and continued his work. The fire got worse so he had to go
down five steps. Later, he climbed up the last six steps and was at
the top of the ladder. How many gsteps were there?

Without any clues and without any training in visualization, the typical
fifth-grade student will read this problem, understand each word, see three
numbers, and proceed to the incorrect solution of adding the three numbers.

Training in the use of visual imagery encourages the student not to jump
to the second stage of the problem-solving process prematurely. Understanding
the problem is a prerequisite for organizing the plan of attack. 1In the
visual mode, the student will first feel the fire, experience its heat, draw
it on paper, act it out. The student will differentiate between climbing up
the steps and going down. An entire visual image will be constructed.

Perhaps a drawing of the ladder will be exhibited by the students or perhaps
the mental image will be sufficient. In either case, the student will realize
that climbing up the ladder is a motion in one direction and going down is a
motion in the opposite direction. The numbers should not all be positive.

Extensions are up to the individual. What if the ladder were longer?
What if there were an even number of steps?

Now consider a second problem:

Sally had a new bike which she takes to school every day. On some
days she rides the bike to school and walks home; on the other days,
she walks to school and rides the bike home. The round trip takes
one hour. 1If she were to ride the bike both ways, it would only
take 1/2 hour. How long would it take if she walked both ways?
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The typical solution involved subtracting the two given lengths of time:
1l hour = 1/2 hour = 1/2 hour. The solution is not reasonable, but this would
not be noticed unless some visual imagery was evoked.

The student should again be encouraged to think and visualize the problem
situation. Imagine riding a bike to school; compare it to walking to school.
Which is more enjoyable? Which gets you there quicker? Draw a picture or act
out the scene. If it takes 1/2 hour to ride the bike both ways, how long does
it take to ride the bike one way? Why?

What other modes of transportation are there? How might you change this
problem to include other possibilities?

Conclusion

The teaching of problem solving is a very complex operation. To teach a
student three or four strategies, such as finding a pattern, constructing a
table, or establishing a subgoal, may prove beneficial once the student has
reached the second stage of the problem-solving process.

A more general pedagogical idea 1s to consider emphasxz1ng a different
mode of thinking —- visualization. The effects of this approach are simple,
but profound. As Simon (1976) points out: ' '

An important component of problem-sclving skills lies in being able
to recognize salient problem features rapidly, and to associate with
those features promising solution steps. Much current instruction
probably gives inadequate attention to explicit training of these
perceptual skills, and the kind of understanding that is associated
with them. (p. 21)

Visualization can be promoted in the classroom. Students can enhance their
perceptual skills. Problem-solving performance can be improved.
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Graphic Representations of Word
Problems

by

Verena Sharkey
New Castle School District

Problem solving is the ultimate goal for learning to manipulate numbers
or deal with the so-called basic facts. Unfortunately, most people are not
born with the ability to pull solutions to problems from either their minds or
their backgrounds. This being the fact, problem—solving skills must be
acquired and it becomes the responsibility of the teacher to help students
learn some methods which will be reliable for finding solutions to most types
of problems.

Making pictures or graphic representations of problems is one method of
instructing students which can be started in the primary grades and carried
through secondary school and college. Graph paper is an excellent medium for
instructing students in graphic representations of problems. For primary
students, large block graph paper should be used. However, for the sake of
space in this paper, most examples will use centimetre paper. Rather than use
pages of explanation of the method, examples will be shown using a variety of
problems in the first through sixth grade level.

Problem 1. Six birds sat on a fence. Four birds flew away. How many
were left?

Method. Enclose six blocks on a sheet of graph paper. Darken four
blocks and count the remaining blocks.

Write the number sentence 6 - & =[]
6 — 4 = 2.
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Problem 2. On a trip through the city, Beth counted 25 red cars and Dave
counted 18 blue cars. How many more red cars than blue cars were counted?

Method. Have students enclose or cut out 25 blocks to represent red cars
and 18 to represent blue cars. 1In this case, cutting would be preferable
because the 15 could be placed over the 25 and the remainder counted. Then

write the number sentence _
25 - 18 =[]
25 - 18 = 7.

Problem 3. Jean has 12 apples. She puts 4 apples in each bag. How many
bags does she need?

Method. Enclose 12 blocks and then circle sets of 4. Count the sets of
four to determine the number of bags needed.

Then write the
number sentence:

s =[]

12 + 4 = 3.

12

Problem 4. James made a pan of fudge. First he put 5/8 cup of sugar in
the pan and then added 1/8 cup more. How much sugar did he use in the fudge?

Method. Enclose a strip of 8 blocks. Darken 5 of them to show 5/8, then
darken 1 more block to show 1/8 and add the number of darkened blocks.

Then write the
number sentence:

Problem 5. There are 60 minutes in an hour. How many minutes are there
in 5/6 of an hour?

Method. On graph paper, enclose 60 blocks, then mark off six even sets.
Darken Eive of the six sets and count the blocks.
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Write the number sentence: 5/6 x 60 =
5/6 x 60/1 = .

Problem 6. Ann rode her bike 2 kilometres in 12 minutes. At the same
rate, how long will it take her to go 8 kilometres?

Method Shown.

Write number sentence: _2 _ 8
12 3
2.8
12 48

Graphing, of course, is only one skill which is helpful in solving word
problems. In developing the skill of graphing, the teacher plays an important
role in teaching students how to relate the problem to the graph. The
graphing method presents students with a successful experience in problem
solving that can be applied throughout the grades.
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Teaching Model Problems
and the Colour Coding of Problems
by

Bruce Hedderick
John Ware Junior High School

Model teaching of problems can be thought of as the excellent teaching of
problems. It 1s hoped that my operational definition of "model problems" will
encompass this idea. A model problem is a broad outline of a concept, using a
particular problem, so that students may use the idea of this concept for
similar questions and problems. Yaroshchuk (1969) suggests that,

For a pupil to acquire a precise concept of a particular type of
arithmetic problem, this type of problem should have a definite
name. It is necessary that pupils learn to clearly isolate the
mathematical structure of a model problem. In teaching model
problems it is necessary to propose both numerical and subject
problems, and compare them with each other. Only after they have
acquired the ability to see this structure in the condition of both
numerical and subject problems is it desirable to communicate the
name of the given problem type to the pupils.

In other words, this material suggests that after a concept is presented using
a couple of different problems, an outline for this concept would give
students a general method of attack for other similar questions and problems.
The outline can then be given a name to help the students remember how to
attack these types of problems.

The teaching of model problems, as a concept, does not seem to be done in
North American textbooks as it should. For example, the addition of integers,
rational numbers, real numbers and algebra are taught, but never tied together
in one large example. This example could be presented as a good review, once

the pupils have been exposed ta all of the ideas of integers, rational
numbers, real numbers and algebra. The teaching of a model problem would
incorporate these ideas: (1) a concrete example, (2) an integer example, (3)
a rule, (4) a rational number example, (5) a real number example, (6) an
algebraic example and (7) a problem example. The students would be asked to
name this example and then some questions and problems could be given for
practice.
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Let us take an integer example of adding -5 + (+3) = which could be made
concrete by the use of a graphic diagram. If a child can get a picture in his
mind of what is happening, the problems will seem much easier to him. The
students draw a line down the middle of a sheet of graph paper and then using
red and green pens designed for reading material, map the addition on the
graph paper:
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The students could then be asked to map -5 + (-3) =, +5 + (-3) =, and
+5 + (+3) =, on the graph paper. Coloured dice could be used to generate more
problems. The students could be asked to explain the rule and then sclve
these problems.

Integers Rational Numbers Real Numbers Algebra
=50 + (+30) = S5+ -3 = +547 + (<347) = 45X + (+3X) =
7 7

The students having been given this type of understanding, cam now be
given both a number and a word problem. An example of a number problem is,
"1f Johnny adds positive 5{11 to negative 3411, what is the answer?" An
example of a word problem is, "A submarine is on the surface of the ocean at
sea level. It dives 50 metres and then rises 30 metres. How far below sea
level is the submarine now?"

Kalmukova (1975) reported on the teaching methods of a Russian elementary
school teacher. The pupils of V.D. Petrova attracted attention because when
difficulties in problem solving arose, the pupils returned to the text of a
problem, reread it, and looked through the solution they had done. They also
corrected most of the errors they made by themselves. They were, in case of
failure, able to change the method of solution or find a new one. They could
also outline a different path of solution for a single problem.

V.D. Petrova's classes were observed systematically while she was
teaching problem solving. She emphasized reading the problem carefully with
intonational expression, and emphasized that each word is important regardless
of how small it is. Intonation had to be varied by the students when they
saw punctuation marks. The students then separated the text of the problem
into individual data and the unknown. The students completed the questions
and then checked for mistakes. Homework was not considered done unless the
scratch sheet was turmed in as well. A pupil's mistake was analyzed by the
class for errors in reading or thinking. The pupils were gradually trained in
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controlling the operations they used, and in correcting their mistakes. A
person learned to think with words. In addition to developing the pupil's
speech, Petrova also developed thelr logical thought and increased the level
of their analytic-synthetic activity.

One method of improving reading ability for problems, as well as
improving the method of reading with intonation, is by colour coding the
problems. This can be done by again using coloured reading pens. The red pen
(represented by Q) can be used to highlight the numerical data. The green pen
(represented by [CJ) can be used to mark every word considered to be
important in the question, and a yellow pen (represented by €3 can be used
to point out the unknown.

Problem: A 5ubmarine-is‘on the surface,of the ocean,
leve It dives|(O0 metres) and then [rises{Qa
How far below sea levellis the submarine {now

Solution: X = How far below the surface now?

(BE) -

-20 = X

It

The submarine is 20 metres below the surface.

Try to solve the following number problem using colour coding. "If
Johnny adds positive 5411 to negative 3411, what is the answer?"

M.E. Botsmanova (1972) suggests to us that the use of a graphic diagram
could help students solve problems. A graphic diagram provides an abstracted
and generalized expression of mathematical relationships. It starts with a
subject analytic picture for the specific problem and leads to a graphic
diagram for other cases. The following is a subject analytic picture and a
graphic diagram for the submarine problem given above.

r
. —— - Sea
f Level

=

S50m,

SUBJECT ANALYTIC PICTURE GRAPHIC DIAGRAM
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Many texts give us pictures that don't help us to solve problems. These
pictures should be changed to subject analytic pictures and graphic diagrams

to help students find methods for attacking problems.

The combination of reading with intonation, colour coding, using a

graphic diagram, and checking for errors, along with a model problem reference

should help students form a wider application of their concept of problem

solving. Finally, the students should name the model problem with their own
while

words. Teachers might want to call the concept "solving model problems,”

students might want to call it “solving submarine problems.” Whatever the
name, the idea 1s to make the model problems have meaning so the students

remember the rule and its applications.
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Teaching the Solution
of Arithmetic Story Problems
as a True Problem-Solving Task
by

C. Mauritz Lindvall
University of Pittsburgh

When elementary school children solve arithmetic story problems, they
should be engaged in a true problem—solving activity. By "true problem-
solving" I mean that the pupils should be analyzing each story in terms of
what is described and what they are asked to find and then using the results
of this analysis to determine what operation(s) should be applied. The
degired type of activity is not taking place when children are solving a
series of stories by mechanically applying the one operation they are studying
at that given time (for example, solving every story by merely multiplying the
two numbers that are given because this 1s the operation that is the focus of
study for this week). Nor are they having problem—solving experience if they
are using some "key word" to help them guess what operation to apply. These
latter approaches to the solution of story problems are not based on a real
understanding of the problem, and permitting pupils to use such procedures
will not result in their acquiring a real capability for problem solving.

Work on story problems can provide the cccasion for students to have the
type of problem—-solving experiences which teach them how to apply their
mathematical knowledge and skill to practical everyday problems. But this
analytical type of problem solving is not an ability that children acquire as
a natural by-product of instruction and drill on basic arithmetic operations.
As is suggested in the recent set of recommendations prepared by the National
Council of Teachers of Mathematics (1980), the solving of arithmetic story
problems is an important and separate capability and one which must be as
carefully taught as any other mathematical skill. This paper describes one
approach to this difficult teaching task.

Steps to be Followed in Analyzing

and Solving Arithmetic Story Problems

In attempting to make arithmetic story problem solving a systematic and
thought ful process, many teachers provide a list of steps that pupils are to
follow in analyzing a story and deciding what arithmetic operation to employ.
Table 1 provides an example of such a list. 1Is such a list of any value to
the pupil? Does it describe a set of teachable skills that can provide
guidance for instruction?
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Table 1. One Example of a Series of Steps Pupils Could Be
Taught to Follow in Solving Arithmetic Story Problems

1. Find out what is given.

2. Find the question to be answered.

3. Think about the operation that should be used.
4. Select an operation.

5. Carry out the operation and find the answer.

6. Re-read the story to see if your answer appears correct.

An examination of the sequence of steps shown in Table 1 would probably
convince us that steps ! and 2 should be relatively simple to teach. Problem-~
solving performance would be improved if we could get our pupils to attack
stories by directing their thinking to the significant information provided in
the story. 8ince pupile will, sooner or later, learn to carry ocut basic
operations correctly, most teachers might also feel that steps 5 and 6 would
cause no great problem with the majority of students. But what about steps 3
and 4! How can one teach children to "think about the operation that should
be used"? Do we really know what to teach here? The purpose of this article
is to examine steps 3 and 4 and to attempt to provide some guidance for
teachers faced with the task of helping students learn to do the type of
analytical thinking required in true problem solving.

Can He Teach Children to

"Think About the Operation That Should be Usged'?

Does the injunction to "think about the operation that should be used"
represent a meaningful step for pupils to follow? At first glance this state-
ment might appear to involve a side-stepping of responsibilities on the part
of the teacher. It almost suggests that the teacher is saying, "I really don't
know what to tell you to do exactly, but if you think about the story, you may
be able to figure out what to do yourself.™ Certainly, "think about" is not a
very specific bit of guidance. But, in a very real semse, isn't this exactly
what the teacher must say? 1Isn't it really a recognition of the nature of
"problem solving”? 1If there was a specific sequence of rather mechanical
steps that students could follow to always identify the correct operation to
apply to a story, this activity would not be "problem solving." It would
merely be the application of a set of rules, or an algorithm. Problem solving
must involve the step of "thinking about" what to do. Our step 3, then, is
not a "cop-out" on the part of the teacher. It is a recognition of the fact
that story problems should represent a true problem-solving activity for the
pupil. The task of the teacher, then, is to help pupils learn to do some
effective thinking in identifying the correct arithmetic operation to apply in
the case of a given story. This teaching goal can be achieved if we give
students tools for analyzing the story and representing its essential
information in a form that suggests the needed operation.
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How Should Children '"Think About" Story Problems?

Obviously, the thinking that we wish to have children do in solving any
story problem is thinking which reflects a clear understanding of the problem
and that results in a correct answer. We would like each child to be able to
respond toc the request to '"explain this story to me" by giving a clear
description of what states or actions the story involves and how an answer is
derived. We would not be satisfied with an explanation such as "whenever I .
see the word 'less', I always subtract.” The type of description that we want
is the type given quite often by kindergarten and first-grade children when
they are presented with a simple story and a set of blocks and asked to "use
these blocks to show me what this story means." Here, for example, if the
story involves finding the number of marbles two boys had altogether when each
had a given number, we might expect a typical student to count out sets of
blocks to represent the number of marbles each boy had and then put these
together in one set and count the total to find the answer. Students display
their understanding of the story and its solution by translating it into a
form which provides a clear presentation of the information needed to solve it
(i.e., the number in the given sets and the set joining operation needed to
get the answer). Note that these children must "think about" the story. They
don't have command of any arithmetic operations that they can apply in some
arbitrary manner-.

Many kindergarten and first-grade children show this kind of
understanding of simple stories before they have any formal instruction on
arithmetic operations. It appears that it is only after children have learned
something about formal arithmetic operations and gare exposed to slightly more
difficult stories, that they attempt to solve stories without really
understanding them, without "thinking about" them. To obtain some useful
insight into why this situation develops so frequently, it may be useful to
raview how story problem-solving ability first develops in a typical child.

How Do Children First Learn to Solve Story Problems?

Pre-school children, after they have learned to count, will frequently
take part in a type of play with a parent or some older person in which they
use this newly acquired ability to answer simple quantitative questions. The
adult might say to the child, "Take 3 blocks for yourself. Now give me 2
blocks. How many blocks do you and I have altogether?" Another set of
instructions might take the form of "Give yourself 7 cards. Now give me 3 of
your cards. How many cards do you have left?"

Activities such as the above can be thought of as the child's first
exposure to arithmetic story problems. After some minimum guidance and -
instruction, most children appear to have little difficulty in arriving at
-— —————soclutions—to these_simple quantitative problems. It should be noted that what
children do here involves an "acting out" of the story. The characters in the ~~— — — —
story, "you" and "I", are actually present as are the objects described,
blocks or cards. All that is required for solution is a correct counting of
the set that represents the answer. Because of the specific and concrete
nature of what is described and asked, most children quickly master such
"story problems."

76



Shortly after showing some ability with stories of the above type,
children are likely to be exposed to "pretend" stories. For example:

Pretend that these blocks are pieces of candy. Suppose that
you have 5 pieces of candy. Then, I give you 3 more pieces of
candy. How many pieces of candy would you have then?

Or the story might be slightly less concrete and involve even more pretending.

Pretend that you have 4 pieces of candy. HNow pretend that your
friend Sue is here and that she has 2 pieces of candy. How many
pieces of candy do you and Sue have together?

In solving such a story children cannot fully act out the story in the
same sense that they can act out stories involving "you™ and "I". When they
have mastered these "pretend" stories, they have acquired a slightly more
sophisticated problem-solving capability, the ability to make use of simple
abstractions. They realize that to solve problems about candy they do not
have to count and sort pieces of candy. Since the key to solving problems
about "how many" is focusing on number, or numerosity, the children can use
any easily countable elements to represent the number of pieces of candy.
They have abstracted the quality of numerosity as a key component that is
needed for the solution of the story. Also, they recognize that it is not
necessary to have "Sue" present in any concrete form. They can represent
Sue's candy by building a set of two in some convenient location and
identifying this set as "Sue's candy." 1In doing this they have abstracted the
quality of "set identity" as another key component in story representation.

The foregoing analysis has suggested that very young children may solve
arithmetic story problems at one of two levels. At the simplest, or
beginning, level they really "act out™ the story. At a slightly more advanced
level, they develop a physical model or representation of the story and
manipulate this model to solve the story. This can be represented as shown in
Table 2.

Table 2. The Three Levels of Representation of a Story Problem (Arrows
Show Desired Steps Followed by Student Having Mastery of This Capability)

Representation Method of
of Problem Solution
Level 1 Problem in.story form Act out the story
i
Level 2 Essential components represented Model is manipulated
in physiCﬂl model to determine answer
L]
1
v
Level 3 Essential information and operation Solution of
shown in math model — == ====3% math model

(e.g., number sentence)
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As has been described previously, the student's development of the
physical model (e.g., using two sets of blocks to model a story that says, "Ann
had 3 pieces of candy and Billy had 5 pieces of candy. How many did they have
together?") involves abstracting from the story as originally given, that
information which is essential for solving the problem. We shall see that
this is a key phase in the child's "thinking about" the story.

Learning to Write Number Sentences for Stories

Skemp (1971) described the process of solving arithmetic story problems
as one of making the necessary abstractions from the actual story in order to
identify the exact information needed to carry out the steps needed for
solution. The process of developing a physical model of a story situation, as
presented in Table 2, has already been described as invelving abstracting
from an actual story, that information needed for developing the model and
manipulating it to arrive at a solution. This means going from the actual
characters, objects, and relationships or actions described in the story to a
representation of these by means of, for example, sets of blocks appropriately
arranged on a table. Going from such a physical model to the writing of an
appropriate number sentence, or some other representation of an arithmetic
operation, involves a further task of abstraction. This third level of
abstraction involves representing the numerosity of a set of blocks through
the use of the appropriate numeral and representing the correct set operation
with the symbol for the corresponding arithmetic operation. That is, this
stage involves the development of the number sentence, or "mathematical
model," that can be used to solve the story.

In Table 2 the ultimate capability which we wish to have the pupil
develop is indicated by the path represented by the dotted-line arrows; seeing
the problem in story form, generating some type of physical representation,
writing the number sentence for the story, and solving the number sentence to
determine the answer to the story problem.

It is to be noted here that if this analysis is correct, children
initially learn to write number sentences for story problems by first
developing a general physical model of the story and then writing the number
sentence for this model. That is, they make use of a skill previously
acquired (developing and using a physical model to solve the story problem) as
an intermediate step in developing the proper number sentence for the story.

When children demonstrate the ability to use a physical model to solve a
story, there is little doubt that they "understand" the problem. They can
tell you what different elements in the model represent as far as components
of the story are concerned. They can also relate operations on the model to
operations described in the story. The story and model have a one-to-one

——— ———relattonship—with-no-mystery-associated with it. _

Writing the proper number sentence, then, is also a meaningful
representation of the story because it is derived directly from a set
operation. That is, children understand the story and the arithmetic
operation that can be used to sclve it because they understand the abstracted
physical representation of the story that serves to identify the correct
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arithmetic operation. Although the example used in this paper is that of a
very simple addition story, this translation of the verbal story intoc some
type of intermediate representation (or series of representations) that can
provide a meaningful link between the story itself and the appropriate
arithmetic operation is what the problem solver must do in "thinking about"
how to solve any story problem no matter how simple or complex.

It should be noted that the "physical model" referred to in Table 2 is
some type of simplified representation that contains the information from the
story which is essential for solving the problem. With the simple story that
has been used as an example in the discussion to this point, this intermediate
representation (intermediate between the actual story and the number sentence
that can be used for solution) could well take the form of sets consisting of
physical objects such as blocks, or sticks, or the child's fingers. However,
with other stories the necessary model may take the form of a diagram on
paper, of some version of a number line, of a data table, or any of a number
of possible simplified representations of the essential information from the
story.

Suggested Procedures for "Thinking About'" Story Problems

Table 3 gives an example of how a story problem might be represented and
solved, showing representations that vary from an acting out of the actual
story through increasing degrees of abstraction to the most abstract
representation, the number sentence.

It is contended here that children can write a number sentence for a
story, such as the one shown, with understanding, only if they first translate
the story intc some type of intermediate representation that makes totally
clear what operation must be applied. This representation (which may be an
almost instantaneous mental representation for the person who is highly
proficient with the given type of story) in the case of the story shown in
Table 3, must clearly show that solution of the problem requires the joining
of two sets. Only when this is made clear to the problem solver can he or she
proceed to write a number sentence with a full and correct understanding of
why this particular mathematical operation i1s appropriate. That is, addition
can be used to solve this story, not because it contains the word
"altogether," but because the story, when correctly translated, describes the
joining of two non-intersecting sets.

Of course, it can be pointed out that many pupils (and certainly most of
us adults) do not have to go through any of these intermediate representations
in order to solve this problem with complete understanding. Still, the
evidence of our understanding must be shown by our ability, if called upom, to
explain this particular story as one involving the joining of sets (or
"putting groups of things together'" or any comparable expression). That is,
our understanding of this type of story and of the arithmetic operation needed
to solve it is such that we mentally develop such intermediate representations
and do this so quickly that we are not really aware of having taken this step.
To achieve this type of understanding it is probably essential that all
students actually be taught to use intermediate representations of stories and
that they be given practice in using them at all the various points and
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Table 3. Some Possible Stages that Children May Master as they
Develop an Increasing Ability to Use Abstract Representations
of a Story Problem in Arriving at a Solution

Representation Method of
of Problem Solution
Story
Sally had 3. . Student "acts out"
Jack had 4. How the exact story as
many altogether? given

Some Intermediate Representations

Act out, using dolls Story is acted out using
and actual objects this representation
Act out, using Story is acted out using
pictures of characters this representation
Model, using blocks Model is manipulated
(fingers, or any to determine answer

countable objects)
but no pilctures.

Student draws sketches ag
showing numerosity of ogo
sets and their separate

identities

Student draws diagrams

to indicate identity of
sets but uses numerals to
indicate numerosity

®
O

Mathematical Model

Student writes 5+ 3 =
number sentence
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levels in the curriculum where new types of stories are presented, until it is
obvious that they fully comprehend this process. Furthermore, instructional
procedures that have the effect of causing the pupil to skip all intermediate
representations of the problem will, more than likely, result in the pupil not
fully comprehending the problem or its solution.

The various stages in the abstract representation of a story problem that
are shown in Table 3 are presented only as examples of story representations,
varying from the actual acting out of the story through intermediate
representations that are increasingly abstract and provide an increasingly
more direct basis for translation into a number sentence. Obviously certain
other intermediate representations might be substituted for those given here
or might be inserted as additional steps in the sequence. Also, in working
with any given student, only one or two ¢f the intermediate stages might be
needed to enable the student to grasp the basic structure of the problem and
clearly understand what arithmetic operation to employ.

Diagnosing Pupil Difficulties in Solving Arithmetic Story Problems

The experience of most teachers provides evidence for the fact that there
are large individual differences among students in their ability to solve
story problems. Many students display an ability to grasp the meaning of a
story quite quickly and have little difficulty in arriving at a solution.
However, among the group of children who cannot solve such stories there appear
to be great differences in the type of understanding (and lack of
understanding) that they possess. With such students a diagnosis of specific
difficulties would appear to be useful and probably essential.

It is suggested here that a sequence of stages in story representation as
shown in Table 3 can provide the basis for a meaningful and useful diagnosis
of pupil difficulties. It provides e means for determining the types of
abstraction that a pupil can use in representing the essential meaning of a
story. As an example, let's assume that Billy, one of our students, could not
write the number sentence appropriate for the story shown in Table 3. We
might start our diagnosis of his difficulties by seeing if he could model the
story and its solution by using blocks. If he could do this, we would know
that he had a good understanding of the story but needed further work on
writing a number sentence for such a set operation. If he could not model the
story with blocks, then we would proceed in the opposite direction and
determine his ability to provide less abstract representations of the story.
Could he act out the story if we provided dolls or pictures to represent the
characters? If not, can he act out a similar story if we phrase it in terms
of "you" and "1I" and ask him to carry out the transactions described in the
story? When we find the level at which Billy is able to operate, then we can
build on that ability and proceed up through stages involving a greater degree
of abstraction, making certain that he has ample time to master each stage in
turn.

Teaching Problem Solving

The appreoach to the solution of arithmetic story problems that is
outlined in thie paper emphasizes the development of a complete understanding
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of each problem on the part of the pupil. It assumes that the goal of work on
story problems at all grade levels is to teach general problem-sclving
abilities. For example, when we teach first-grade pupils to solve simple
addition and subtraction stories, we are not merely teaching them "when to
add” and "when to subtract.” We are teaching them how to study and analyze
problem situations so that they fully understand them and then, on the basis
of this understanding, are able to determine what arithmetic operation(s) to
apply. 1f this goal is to be achieved, teaching activities must be planned
and carried out in a manner which emphasizes the importance of analysis and
understanding. The following are some suggestions for conducting this type of
teaching:

1. Classroom instruction and pupil assignments on story
problema should give at least as much attention to the clear
representation of the problem as to the calculation of the answer.
For example, pupil written work on story problems should probably
require an answer consisting of two components: (a) some type of
diggram, drawing, or table that provides an abstracted
representation of the essential problem components and relationships
and (b) the mathematical computation used to obtain the answer.

Both components should be graded.

2. Children should be taught, quite deliberately and
specifically, how to develop paper-and-pencil representations of
various types of stories. For example, this could include sketches
of problems involving the combining of groups of things, the
partitioning of groups, the combining of lengths and distances, the
study of differences and relationships, and the comparison of sets
of things. Continuing and frequent instruction on how to represent
stories in this way should be a major feature of the teaching of
problem solving.

3. The diagramatic representation of story procblems must
always include some type of representation of the quantities
involved. This may take the form of countable elements in pictures
of sets, of units on some scale of length, or of numerals.

4. It should be remembered that the arithmetic operations that
will ultimately be used to solve most problems are basically
efficient methods for determining quantities that would otherwise
have to be found by counting. Having a clear perception, as
obtained from the diagrammatic representation, of what would have to
be counted to obtain the answer to a story problem is, then,
essential for a correct identification of the proper operation to
use.

5. Speed in arriving at @ correct answer shouldmot—be —- — - - — —
emphasized in work on the solving of story problems. If importance -
is attached to speed of solution, this may only encourage students

to make a guess concerning the operation to use and then proceed

with computation. The emphasis should be placed on the careful

analysis and clear representation of the problem.
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Summary ,

Research an how adults proceed in their solution of complex problems that
require a quantitative answer indicates that the most effective problem
solvers do not go directly from the given problem situation to some type of
equation or an arithmetic operation that immediately provides the solution.
Rather they go through an intermediate stage in which they use sketches,
diagrams, or other simplified representations of the problem to clarify the
situation and to help them identify the needed operation(s). Research on how
elementary school children solve arithmetic story problems also suggests that
the successful problem solvers can make use of some type of intermediate
representation to clarify the meaning of such stories. The present paper has
attempted to outline how the development of such intermediate representations
of story problems can be used in teaching pupils how to "think about" such
gtories and arrive at solutions.

Specifically, the approach advocated here suggests that understanding of
a problem is gained by abstracting the essential information from the story
and representing this in the form of a "model" or some type of "intermediate
representation"” which simplifies the problem situation. 1In the simple example
of a problem used in this paper, the intermediate representation was presented
in the form of sets of blocks or of pencil sketches of the sets involved.
Such representations can be useful with problems involving groups of things
that are to be joined or separated or operated upon in some way. Of course,
with other types of problems other representations will be useful. For
example, sketches of number lines or other indications of distances and a
variety of types of charts and diagrams suggest themselves. As seen in Table
3, such diagrams may incorporate the use of numerals to indicate set size or
the length of certain distances. This will be particularly necessary when
amounts involved become at all large.

The paper alsoc suggests that assessing the ability of individual students
in terms of how proficient they are in developing such representations of
stories can be a useful step in the diagnosis of difficulties and in
identifying needed steps in instruction. It would appear that if elementary
school children can acquire the ability to analyze arithmetic story problems
through the type of intermediate representation proposed here, they can both
become more effective in their present problem-solving tasks and acquire a
basic skill in carrying out a general problem-solving procedure that will
prepare them to be able to solve much more complex problems encountered in
later years.
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Using Machine Technology
to Enhance Problem Solving
in the Middle School Mathematics
| Classroom
by

Karen L. Jones, Charles E. Lamb,
Fredrick L. Silverman

$ix of the ten basic skill areas listed by the National Council of
Supervisors of Mathematics (1977) related to problem-solving skills and the
use of machine technology. The listed skills are: (1) problem solving, (2)
applying mathematics to everyday situations, (3) alertness to the
reasonableness of results, (4) estimation and approximation, (5) reading,
interpreting, and constructing tables, charts, and graphs, and (6) using
mathematics to predict. Such an emphasis on problem solving and related
skills along with the applicability of calculators and computer technology
requires strategies for use by the teachers of middle schocl mathematics. It
is the purpose of this article to discuss such strategies.

Bell (1978) lists five reasons that calculators and computers can enhance
motivation to learn mathematics in the schools: (1) promoting internal
satisfactions; (2) providing external reward; (3) enlivening the learning
experience; (4) opening avenues of creativity; and (5) responding to a need
for control in one's environment. All of these factors are generally evident
as students plan and execute their own computer programs or address
interesting situations —- often problems -- using hand-held calculators.

Some additional aspects of computers and calculators make them
attractive:

(1) They provide a means for doing tedious calculations quickly.
(2) They provide immediate feedback.
(3) They may be facilitators in problem solving as they help
to give partial solutions to more difficult problems.
(4) They seem to have applications with both weak and strong
students.
- (5)—Computers_and calculators are a spreading phenomencn in
today's society. T - = =

Decreasing prices defy inflation, and affordability puts hand-held
calculators into American pockets and micro—computers within reach of many
families and businesses. Here are some examples of calculator and computer
usage which may help these devices realize their potential.
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Calculators

(1)

Relegating tedious calculations to secondary status to enable

students to make a judgement.

(2)

(3)

(4)

Consider two cars. One went 317.9 kilometres on
36.48 litres of gas; the other went 512.4 kilometres
on 58.68 litres of gas. How do the cars compare

in kilometres per litre?

Using the calculator to find errors in computations.

Below is part of the record from a checking account.
There is a $1.90 discrepancy with the bank statement.
Find any errors, and correct them. How did they occur?
What should the balance be?

Check # Date Amount Previous Balance: $1245.18

#1431 29 May 12.50 Bret's Hardward 1232.68
#1432 2 Jun 25.43  J.C. Peanuts, Inc. 1208.25
#1433 2 Jun 128.94  Post-Pine Furniture 1079.31
#1434 5 Jun 38.11 Mina Bird's Pets 1041.10
#1435 6 Jun 2.56 U.S.P.S. 1038.64
#1436 10 Jun 19.25 Henry's Hickory Hut 1019.39
#1437 11 Jun 29.87 Wonder Grocery 990.42

Providing selected instantanecus information.

a. How useful is the calculator in finding these products?
250 x 10

267.5 x 10

2750 x 10

27.89 x 10

b. Find a decimal representation for 8/15.

Regulating tedious calculations to secondary status

to enable students to investigate patterns. The calculator
1s useful as a tool for generating, gathering, and
organizing data. ’

a. Use the calculator to find the pattern for
finding such products as those that follow.

15 x 15 = 225
25 x 25 = 625
35 x 35 = 1225
45 x 45 = 2025
55 x 55 = 3025

What is 95 x 957 (9025)
Do you see a means to find those products quickly?
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Find the answer and patterns:

15 x 25 =

25 x 35 =

35 x 45 =

45 x 55 =
What is 75 x 857
Do you see a means to find these products quickly?
How does it compare to the one you found in the
first part of this question?

b. Use a calculator to find a pattern for the
units digits in the sequence
70, 71 72 73 74, L 2

Try this activity with other base numbers.

c. Two sequences of numbers appear below. Investigate what
happens when you add the same number of consecutive
members of each sequence, starting at the beginning.
Sequence A: 1, 1/2, 1/4, 1/8, 1/16, . . . .

Sequence B: 1, 1/2, 1/3, 1/4, 1/5, 1/6, . . . .

d. A square has dimensions 16 cm on a side. If each
side 1s halved, what effect is there on the area?
Continue the process. What results emerge?
Suppose you start with a square of 24 em. on a
side. Apply the above procedure, and make
similar observations. By what percentage does
the area change?

e. Generate the Fibbonaci sequence (1, 1, 2, 3, 5, 8,
13, ...). Did you use the exchange key? If not,
try to figure out a way to do that. It will be a
procedure somewhat like doing "step programming"
manually (Maor, 1980).

Computers

(1) Routine programs - for example, the student might receive drill on a
P g
previously learned skill.

Use a programmable calculator to compute the mean, median, mode,
variance, and standard deviation of a set of test scores.

(2) Debugging programs - making a program "work" may be problem solving at
its best.

Debug the attached program for finding a Pythagorean Triple where all
" three digits are larger than 100.-~ Do mot use multiples—of triples—with - - —_
smaller numbers.

(3) Writing programs - writing programs gives children a chance to exercise
their creative abilities.
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Create a program which gimulates continuously inscribing squares for a
sequence of iterations.

Some items appear so simple that the calculator may not simplify them
(e.g., 2526 x 100). Nevertheless, children at the level of learning to "annex
the zeroes" or "move the decimal point" can encounter numerous multiplication
instances from which they can often discover the procedure by observing,
writing, and studying the results their calculators show them. In each of
these examples the calculator or the computer considerably simplifies each
situation. People are using calculators and computers daily to resolve such
practical concerns.
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To You With Problem Solving

by

Al Anderson
Medicine Hat School System :

"] want you to build a fence so that my cows will have the most
possible grass to eat. That's the problem, Jim."

Jim has been given 16 five-cm rods and two plastic cows with the hidden
agenda of finding a relationship between area and perimeter.

Believe it or not the above situation fits most of today's written
criteria for a good problem. 1In short, a problem is any situation an
individual faces for which no immediate solution is apparent but which holds
the possibility for solution. Most descriptions would add the necessity for
the person to accept the situation as a problem; otherwise, for him it is not
a problem.

The number of students in schools who are able to experience problems
like the "cow in the pasture" story is small. How many textbook problems, for
example, include the following characteristics for good problems identified by
Nelson and Kirkpatrick (1975)?2

1. It is significant mathematically.

2. It involves a real object.

3. The child is interested in the problem. -
4. The child must make modifications in the situatiomn.

-~ —-—5.—Several-levels of solution are available.

6. The readiness with which the child attempts a solutionm indicdates™ ~—— — — ——
that he is convinced he can solve the problem.

Indeed we hear much about how poor students are at problem solving. What
is it that they have difficulty with? Picking the equation? Getting the
numerals for the sentence in the correct order? Such questions as these are
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indicative of a lack of experience with exciting problem~solving activities.
Perhaps cur students are poor problem solvers, but, given the right
environment and a new mind-set toward the processes involved, both we and the
students can learn. In other words, s good problem-solving experience has
something for both the students and teachers. Let me illustrate through
examples suitable for a range of grade levels.

Grades One-Two

Good problem-solving experiences are not limited to the upper elementary
grades. The earliest pre-number development can and should be problem based.
Classification tasks, for example, provide simple problem-solving experiences.

Are there more than three

@ ways to put these toys in
@% groups?

Even at this level pupils are required to go through a series of process
actions, each one dependent on the preceding.

Eventual solution depends upon identifying
minigoals and their place in the total problem.

In solving the classification task, pupils must realize that the toys
have unique characteristics such as shape, color, texture, and function
that relate to the "ways" to "group" the toys. They must also understand the
concepts of "three" and "more than" before a realistic solution scheme can be
devised. Next, there must be some type of planned actions or procedures.

The minigoals must be acted upon according to
some plan toward problem solving.

Here some of the side Lenefits of teaching via problem solving begin to
emerge. The nature of the problem will almost guarantee a pupil-teacher
interaction. The setting promotes discussion. How are the toys different?
Can you put some of the toys together in another way?

When the minigoals have been reached, the students must see that a
solution is possible and then act on that conclusion.

The problem is to be solved.

The pupils must be able to demonstrate whether they were able to group
the toys in more than three ways. A review of each setting is an important
aspect of problem solving. Student and teacher should come to early and
mutual agreement on the success or weakness of the strategies used.
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there are obvious differences based on the prerequisite

A review of the problem and solution strategy

is necessary feedback.,

Even though these same four steps are important at each grade level,

skills available to

students.
Prerequisite Problem-Solving Types of
Level Skills Skills Problem
1-2 Sorting and Uses concrete Picture problem
classifying materials to solve sorting, matching
according to classification
various attributes Collecting data from
real experience Non-number
1-1 Correspondence
Equivalence Sequencing events in Patterns
pictures and
Number as a class stories Sequences
Cardinal number Diecusses problems Operations concepts
grouping to find main parts Numeration problems
with object
Place value Retells the problem
Calculator problems
Explains information
in problem
Grades Three-Four

l[D_EI

"You are a delivery man about to make drops at the stations but
listen carefully and follow these rules:

S

ll

QO Q)

|sTATION 1.

[sration 2]

[srarion 3] [sTATION

pupils take in solving problems.
minigoals) or do they barge ahead based on superficial hunches?

Drop one block at Station 1 and two more blocks at Station 2 than

you did at Station 1.

did at Station 2, and so on.

Drop two more blocks at Station 3 than you
The problem is "At which station will

you not have enough blocks to make a delivery (Nelson and

Kirkpatrick, 1975)7"

Froblems such as this can be used effectively for assessing the steps

proportion of students operate as follows:

20

Do students analyze problems (identify

What



3.
4.

They do not determine the total number of blocks to be delivered

(e.g-, '12).

They tune in on problem segments and neglect the total perspective
{e.g., drop one block at Station 1, two at Station 2, etc.).

They guess without evidence, (e.g., "Station 5").

They are satisfied with inappropriate solutions (no verification).

Although it is important that many problems be presented orally and that
students be encouraged to talk through the problem parts and eventual
solution, this oral thinking is more characteristic of young children than of
Perhaps we are causing this with our abundance

children in the middle grades.

of written work, total class instruction and hush-hush enforcement.

Again, we can outline a distinct program of prerequisites and
problem-solving skills as well as some problem types.

place value to
(4-5 digits)

Identifies and
symbolizes
operational
situations

Mastery of basic
facts to limit of
grade level

Uses the algorithm
to grade level
limits

Uses standard
measuring
instruments--
metric linear,
capacity, mass
time and
temperature

Handles the money
objectives to
grade level

Classifies and
constructs 2-or
3-dimensional
figures and objects

approximation

Collects data and
conatructs graph

Interprets
and data

graphs
charts

models
patterns

Constructs
explores

Reconstructs
problem

Identifies
relationships

Makes tables for
recording and
interpreting
data

Makes projections,
determines
reasonableness
of results

Relates number
sentence forms
to operation
situations

Prerequisite Problem Solving Types of
Level 1 Skills Skills Problem
3-4 Can identify and use Uses estimation and Real-life

Can you make change
for 50 cents
using 6 coins,

7 coins, 8 coins?

Tan-Gram puzzles
Gegboard problem

Number challenges
If 7 cycle riders
and 19 cycle
wheels went by
you, how many
bicycles and how
many tricycles
passed?

Calculator problems
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As in our daily living, many problem breakthroughs are a result of group
interaction. The following problem may best be handled in this way.

Grades Five-Six

Collect sets of circular objects such as cans, cups, chips (about five
different sizes). Give each grouping of two or three students one set of
these circular shapes, one scissor, one metre of string, a 30 cm ruler and a
large piece of paper. Students are given only cne statement. 'Graph the
relationship of the distance around to the distance across your shapes.”

Most of your groups will struggle for some time with this problem. There
is a powerful temptation to rush. Don't be afraid of taking more than one
class period. Some of your so-called slower pupils come through in such

problems. Manipulative activities such as these often act as equalizers for
these students.

Eventually, you want your pupils

to cut pieces of string to fit

the distance around the shapes

(vertical). The horizontal

distance is found by marking off
the actual diameter. The result
should be a straight line

@ representation.

Another group of students can approach the same problem in a different
activity. Give each group of two to three students a package of Cuisenaire
rods. Ask them to illustrate or show the relationship between the distance
around and the distance across a circular shape.

This method could also serve
to establish the 3-1 relation-
ship between circumference

and diameter.

The next cutline provides an extension of the types of problems,

prerequisite skills, and problem-solving skills appropriate for grades 5 and
6.
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Prerequisite Problem-Solving Types of
Level Skills Skills Problem
5-6 | Rounding numbers Gains total Multi-step

Adds and subtracts
whole numbers to
grade limits

Multiplies and
divides to grade
limite

Ordered pairs

Reads and writes
coordinates

Constructs and
interprets graphs

Uses appropriate
standardized
measuring units

Reads distances
to scale

Draws diagrams to
scale

Knows interrela-
tionship among
units of length,
capacity, and
mass

Uses decimals to
thousand

perspective on
problem

Explains focus of
problem

Identifies required
information

Uses data collection
and recording
. .8kills

-

Uses diagrams and
role play to solve
problem

Finds alternate
solutions

Applies equations
where appropriate

Checks solutions

A Girl Guide troop
sold 2000 boxes of
cookies last year.
This year they want
to make $800. 1If
they sell the same
amount of cookies
and cookies cost §l
per box, how much
must they charge
per box?

No Solution Problem
If a ship sinks one
metre further in
the water for every
200 people on
board, how much

of a ship will

be under if

2000 people were
sboard?

Calculator Problem
An average heart
pumps 80 ml of
blood each second.
How many litres

of blood has your
heart pumped

since birth?

Fun Problem

Two coins total 55

cents. One is not

a nickel. What are
the two coins?
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It is good for students and teachers to realize that there are benefits
to experiencing many ways of solving like problems. Such problems also
provide opportunities for conducting informal assessment of pupils in terms of
concepts, problem-solving process skills, or affective behavior. Anecdotal
notes on students can be made while they are engaged in the problems. For
example, how many give up before they try? 1Is there a reluctance to use
pencil and paper for recording, drawing or graphing? Do students use the four
problem-solving steps discussed earlier? Is there any evidence of their using
previous knowledge (e.g., graphing, measurement, etc.)? Does their lack of
response indicate a negative self-concept?

In conclusion, if success in problem solving is the primary goal of
mathematics teaching and learning, why is it not more evident in our current
mathematics programs? What can be done about improving the situation?

It is fairly clear that much confusion continues in regard to what
problem solving is. Not only do the definitions vary, but we find different
interpretations for its use in school programs. For example, some view
problem selving only as an avenue for applying and practising newly acquired
skills in a real-type setting. The basic purpose here 1s answer getting and
refinement of skills. Others view problem solving as an opportunity to delve
into the unknown. The essential goal here is for students to rediscover
knowledge and to develop an awareness of skills needed. A growing view is
that problem-solving process skills can be taught and thus applied to future
problem situations be they science {discover-inquiry}, social studies {value
process) or language arts {(comprehension).

Obviously, curriculum developers have failed in their attempts to build
problem—solving skills, for whatever interpretation, into the current scope and
sequence statements. Textbook publishers have typically had a narrow view of
problem solving, mainly using word problems. We are also at fault for not going
beyond what 1s handed to us. .

Two final related cautions are in order as the various curriculum and
instructional bodies attempt to rectify our failings on problem solving. It
is important for all concerned not to impose rigidity on the teachers of
problem solving. Second, let us not overemphasize the teaching of problem-
solving processes to the extent that we are forced to swing back and forth to
reach the necessary balance.
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We Have This Problem with the Hall
Lockers
by

James E. Riley
Western Michigan University

One of the problems of problem solving is finding good problems to solve.
A good problem is one that does not yield an obvious solution. A good problem
can be modeled or sclved by analogy. A good problem can be studied
empirically. The solution of a good problem may be arrived at from several
directions. A good problem will result in the solver gaining new mathematical
insights. A good problem should be an enriching experience for students with
wide ranges of mathematical maturity. A good problem is hard to find.

We all have our favorite problems. I don't recall where I first came
across one of my favorite problems, but I've seen it in many forms. The form
I like best is found in the Indiana materials (LeBlanc, Kerr, and Thompson,
1976). 1t concerns a fixture found in many schools in North America. You
see, we have this problem with the hall lockers.

Imagine a school with 1000 hall lockers along one side of a hallway. All
the locker doors are open. Imagine 1000 children coming in from recess
approaching the open lockers. The first child in line, a devilish tyke, can
not resist slamming the locker doors shut.

The second child in line wishes to be involved so he starts opening the
locker doors. But he cannot cpen them as fast as they were closed. He is
only able to open every other locker starting with the second locker.

The third child in line wants to get into the act. She does so by
changing the state of every third locker starting with locker number three.
That is, if a locker is open she closes it, and if a locker is closed she
opens it.

The rest of the children pick up the pattern. The nth studeant will
change the state of every nth locker. When the thousandth child has passed
the thousandth locker, which ones will be open and which ones will be closed?

Far be it from me to deprive the reader of the joy of solving a problem
or making a discovery. Therefore, this article will occasionally be

interrupted by the symbol (*) to let the reader know that this is a good place
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to put down the monograph and pick up a pencil and try to solve a

problem.

* * *

The locker problem has been presented to classes of students
fourth graders to college undergraduates.
problem did so by first modeling the problem and then looking for

the modeled solution.
English textbooks along the chalk tray.
class coming in from recess, and walked past the books turning them to
represent open or closed locker doors.
represented an open locker and a book with its back cover facing front

represented a clesed locker door.

1

B

13

F

25

B

become obvious to the solver.

numbered lockers are perfect squares;

divisors of the locker number.
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2 3 4

F F B

14 15 16

F F B

26 27 28

F F F

*

* *

* * * * *

proposed

ranging from

Those who were able to sglve the

patterns in

A fourth-grade class in Sparta, Michigan lined 36 .

5

F

17

F

29

F

6 7
F F
18 19
F F
30 3l
F F

The class then lined up, like

the

A book with its cover facing front

The following pattern emerged.

8 9 10 11 12
F B F F F
20 21 22 23 24
F F F F F
32 33 34 35 36
F F F F B

When the above sequence is studied, one of two (or maybe both) patterns
What are they?

* * *

®

* *

* * * * *

The more mathematically sophisticated solver recognizes that the closed
=1, 2 =4, ¥ =9, etc. Younger
children, because they are less at home with their multiplication facts,

notice the following sequential pattern.

locker open
locker open
locker open
locker open

— e —

- -

2 lockers
4 lockers
6 lockers
8 lockers

»~ A

12

closed
closed
closed
closed

In either case, a solution to the locker problem has been found.
solution i1s not mathematically satisfying. Why are the closed numbered

* * *

_ . lockers_all perfect squares?

*

But the -

The numbered children wheo stop at any given numbered locker will be
The 1st, 2nd, 3rd, 4cth, 6th, and 12th child



will stop at locker 12. Notice that all numbers, except perfect squares, have
even numbers of divisors. The divisors occur in pairs.

12 ] 16 2
1 "1 — 1 —1
———2 —3 —2 Cs
3 —s5 Ct ——25
— 4 L—15 —s
6 16
12

Any locker that has an even number of vigitors will be left in the
initial state because what one visitor does, the next will undo. Only those
lockers with an odd number of visitors will be left in a changed state.

Generally fourth graders will stop at this point. However, the problem
can be pursued a little further with fifth and sixth graders. Look again at
the pattern created by the book model. Notice that the closed lockers
(perfect squares) can be determined by the following sequence.

1 =1
1+ 3=24
4+ 5=29
9+ 7 =16

16 + 9 = 25

Use a set of children's blocks (or a pencil and paper if your children's
blocks are not at hand) to give a geometric interpretation to the above
observation.

* * * * * * * * * * *

Later elementary school children have little difficulty showing that the
addition of consecutive odd numbers of blocks will form a sequence of squares,
with the length of a side one more than the preceding square.
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Add 1 Add 3 Add 5 Add 7

* :]* * K| Kk * Kk k[ %
12 * % * k| * * k k| %
22 * k * * * x| *

32 * Kk Kk ok
42

We leave it to the ninth-grade algebra student to show that the
succeeding terms of the above sequence can be algebraically expressed as

nth square + next odd number = (n + 1)st square
ar
n2+ (2n +1) = (o0 + 1)2

* * * * * * * * * * * *

A mathematical investigation that has fascinated students over the
centuries is the finding of pythagorean triples. Pythagorean triples are
positive integers (a, b, ¢) such that a2+ b2 = ¢2 ., For example, 3, 4, and 5
make up a Pythaporean triple. The multiples of the triple (3,4,5) are alsa
Pythagorian triples: (6,8,10), (9,12,15), etc. Pythagorean triples are said
to be primative if a and b are relatively prime; i.e., if the greatest common
divisor of a and b is 1.

Study the geometric succeeding-square model above and devise a scheme for
finding infinitely many primative triples.

* * * * * * * * * * * *

A general form of the geometric model for the sequence of squares is the
following.
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If in the formula a2+ b2 = ¢c2, we let a =n and ¢ = (n + 1), then
whenever b =4f2n + 1 is a positive integer the triple (a, b, ¢) will be
Pythagorean. Since 2n + 1l will yield all odd numbers, it will also yield all
odd perfect squares of which there are infinitely many. It can then be
shawn that n? and 2n + 1 are relatively prime.

* * * * * * * * * * * *

Can the idea of Pythagorean triples be extended? For example, can we find
triples (a, b, c¢) such that a’ + b3 = ¢32 The Fermat con jecture states that
such triples do not exist for afl + b = cD where n 2 3. The conjecture has
been verified for all values of n 4 2500 plus many more. The futility of the
sedrch can be demonstrated when one tries to extend the sequence model to the
cube. Try it.

* * * * * * * * * * *x *

To extend a3 to (a + 1)3, 3a? + 3a + 1 must be added to a3. This is easy
to verify algebraically. The following figure shows the geometric
interpretation of the extension.
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1f the extended Pythagorean triple is to hold for n = 3, then 3a2 + 3a + 1
must be a perfect cube. The following table shows the first ten perfect cubes
and the values of 3n2 + 3n + 1 closest to the listed cube. The investigator
will not be encouraged by what is shown.

n 3n® + 3n + 1 closest perfect cube
1

1 7 B

2 19 27

3 37

4 61 64

5 91

6 127 125

7 169

8 217 216

9 271

10 331 343

11 397

12 469

13 547 512

14 631

15 721 729

16 817

17 919

18 1027 1000

Thus we come to the end of a problem trail that started with some
mischievous children and school hall lockers to an unsolved problem on the
frontier of mathematics. Granted there were a number of side trails that could
also be investigated such as the investigation of n-gon arrays and geometric
numbers. Nonetheless, the trail we followed carried us through a number
of problem-soclving skills including modeling, emperical data collection,
generalization, and logical thought.

References

Le Blanc, J. F., Kerr, D. R., and Thompson, M. Number theory. Reading,
Massachusetts: Addison-Wesley, 1976.

100



Nuts!

or

How Children Solve Problems
by
John Firkins
Gonzaga University

Attending NCTM meetings is always stimulating and the Grand Forks, North
Dakota meeting was a special treat. As I boarded the plane to return to
Spokane I ram across an ad for F. M. C. Corporaticn in the March issue of
Republic Airline's magazine with the heading, '"Drive Youself Nuts." Under
this was THE PROBLEM: Place 10 nuts in five rows of four nuts each. The
problem is not new. What is new is that a corporation used it in its
advertising.

I took the ad with me and showed it to my daughters when I arrived home.
Deborah, 15, scribbled on a paper for awhile and then announced that the
problem was easy. Her solution looked like this:

Meanwhile, Jessica, 12, had selected 10 nuts from & bowl on the kitchen
counter and dashed to the basement to solve the problem. She was afraid
Deborah would solve the problem and tell the answer before she had a chance to
solve it.

The problem was out of a magazine not a textbook; neither was it the
clever utterance of a teacher trying to stimulate a class! The effect was
amazing.

Within minutes Deborah declared she could place 12 nuts in six rows of

four nuts each! Her solution was to make a six pointed star and place the
nuts as illustrated:
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Shortly after making this discovery she declared that she could place 16
nuts in 8 rows of four nuts each! Her solution:

She was excited and rushed downstairs to tell Jessica.

By this time Jessica had solved the original problem by placing the nuts
on a table in approximately the shape of a five pointed star. Deborah didn't
like Jessica's solution since some of the rows were not straight. She drew a
picture of her scolution for Jessica and challenged her to place 12 nuts in six
rows of four nuts each.

Jessica's solution:

Jessica then had some surprises of her own for her older sister. '"Place
14 nuts in seven rows of four nuts each."
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Solution:

"Place 15 nuts in eight rows of four nuts each!"

Solution:

In this world the ability to solve problems is of paramount importance.
The level at which children approach problems, the investigations they carry
out and the solutions they devise depend on many variables. Fortunately, once
a problem has been solved it can be explained to others who will then know as
much as the original problem solver. The insight achieved can then be used by
those who did not solve the original problem, or who did it a different way,
to solve new similar problems. In any case, not everyone gains insight inteo a
procblem in the same way or at the same stage.

Each of the girls solved the problem. Each produced generalizations to
intrigue the other.

What did Deborah learn from Jessica? Lines need not be straight. What
was her last challenge?

"Place 10 nuts in 45 rows of two nuts each!"

She drew a circle, placed points on it, drew all possible chords and
counted them.

It is exciting to be at the beginning!
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The Great Rope Robbery

by

Elliott Bird
Long Island University

Problem: Two ropes hang 30 centimetres apart in a tall room, 10 metres from
flocor to ceiling. A rope thief with a sharp knife wants to take as much rope
as posgsible, but while the thief can climb as high as necessary, a jump of more
than 330 centimetres results in death. How much rope can the thief steal?

You will find a solution near the end of this article. Before you look at
it, I want you to know that I regret posing my favorite problem in the mode of
an article at all, preferring to have some control over my audience in its
presentation and resolution. But the teaching of problem solving is mwuch more
important to me than any single problem, even my favorite ocnme. 8¢ 1 relinquish
the opportunity for direct contact with you in order tco offer my ideas to a
potentially wider audience. Because I believe strongly that to teach problem
solving we must be problem solvers ourselves, 1 hope that before reading any
further, you will spend some time working on it. By the way, this problem,
like many, is best worked on for short periods of time, allowing the brain to
rest over longer in-between periods.

1 have posed this problem te young children, to young adults, and to
teachers and other adults. With children and adults alike, my objective is the
same: to provide an experience that is at once enriching, satisfying,
stimulating, and pleasurable. With teachers I have an additional objective:
to provide a model for the teaching of problem solving. I am using Bob Wirtz's
concept that a problem poses a question which the solver understands, but knows
neither an answer nor an algorithm for finding an answer. However, the solver
does have enough information to find an answer with a small amount of effort.

Having posed the problem to a class, I permit a short time for discussion.
In this way 1 can ascertain that it is understood and is being taken seriously.
Often, on first hearing the problem, many people react by locking for some kind

— — -—of gimmick—or trick in rhe solution. f{Indeed, when I first heard the problem

from a friend, 1 experienced such a reaction. My friend told me the problem in
a way that indicated that the thief dies if a jump is required of more than
one-third the length of the rope. He did not mentiocn the possible gap from the
end of the rope to the floor. So I interpreted this to mean the thief could

survive a jump of one-third the lemgth of the rope plus whatever distance
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remained to the floor. Thus by cutting off both ropes at the ceiling, my thief
could make a full legitimate jump to the floor. But my friend assured me I had
misinterpreted him. It was then I set about to solve the problem as it was
intended to be solved.) Once I take care of these initial responses and
establish interest, I like to leave the problem and go on to another activity.
I want my audience to go on to the activity as well, so I make sure it is
exciting enough to take their minds away from the rope thief.

This is an important step in the problem~solving process: that is,
leaving the problem, permitting the analytic side of the brain to rest, while
the synthesizing side can operate on a subconscious level trying to obtain a
total picture. A back-and-forth process of focusing on the problem and leaving
it, returning and leaving again, should be repeated over a period of time.

With fifth graders I would not consider the problem more than once or twice in
a week. With adults, two or three times in a day is appropriate. As in real
life, problems are not solved in a moment. Different minds work in different
ways. Teachers who do not recognize the value of the subconscious in problem
solving may overkill a problem and deny many students an opportunity to improve
their sense of their own akills.

A word of caution, however! we have to be especially careful when we talk
about a new problem at the very end of a class period. A young friend of mine
was terribly frustrated when confronted with a homework problem whose solution
required problem-sclving skills and was due the next day. The child spent many
frustrating hours with no success. When giving the assignment, my friend's
teacher should have warned and urged the class not to spend more than five or
ten minutes on it. 1In class the next day, an equal amount of time could have
been spent discussing the difficulties and pitfalls encountered. Then the
teacher should have requested an additional five or ten minutes consideration
of the problem at home that evening. In this way the children learn more and
more about the problem and about problem solving. They learn to saver both the
difficulties of the problem and the nuances of the problem—solving process.

And they gain an appreciation for the mind's intricate modes of operation and
for their own ability to create and comprehend.

Now let's get back to our rope thief. It is the third day the problem is
being discussed. (This may be the third week, but I do not recommend more than
one week between discussions; as little as a day may be appropriate.) On day
one, the problem was intreduced and discussed only to the peoint of ascertaining
that everyone understood it. On day two, solutions were presented and found
wanting. These are the solutions that involve gimmicks like ladders, ceiling
doors, windows. On day three, almost anything can happen.

With my own group of 5th-6th graders, on day three we spent only about 5
or 10 minutes of a one-hundred-minute math period with the problem. By this
time everyone understood how the thief could easily obtain 1330 centimetres.
(Climb one rope to the top, cut off the other rope at the top, climb down to
330 centimetres, cut, and jump to the floor.) And I said, "That's very good.
Can you get any more than 1330 centimetres? No? Are you sure?”

If I had thought they needed more encouragement, I would have told them
that I know a way for the thief to obtain more than 1330 centimetres, but I
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would not have told them how much more, nor would I have indicated any methed.
I prefer not to say any of this hoping that my stance of uncertainty will by
itself accomplish the same thing.

Net much more happened on day three. We talked again about the
difficulties of the problem; how to get 1330 centimetres, and how impossible it
appeared to be to get more than 1330 centimetres unless the thief were to
become a martyr for the rope (i.e. climb, cut, jump from ceiling, and die).

But the next week, a breakthrough occurred. When I relate this incident in
my workshops, where I am in control of the problem-solving atmosphere, I tell
my workshop audience that when I came inteo the classroom, Liz, one of my
students, said, "If only there was a —__, I know a way for the thief to get
more rope."

The word will be filled in momentarily--see HINT below. But, again, I
want to give the reader a chance to stop and play with the problem some more.
Already the quote asbove, even with a word omitted, is an additiomnal clue. I
would even like to urge you to consider posing the question to your class
without knowing the solution. If you don't mind acknowledging your own

uncertainties to your class, a satisfying and interesting discussion might
follow.

My response to Liz was, "How much more rope could you get?"
"All of it."
"0h? How?"

Now a discussion ensued involving a good part of the class. The student
who first made the remark gave an explanation, but initial explanations are
often unclear, and other students entered the discussion as their own
understanding grew and in response to my remarks like, "You seem to have an
idea, but I think you could express it better. Does anyone understand what Liz
is trying to say?"

The discussion on this day lasted much longer than the preceding ones.
Before coming out with a punch line I had in mind, I wanted to make certain
that just about everyone in the class understood how Liz's thief could get the
whole rope. By asking for repetition for the sake of clarifying, by asking who
understood how this proposed device enabled the rope thief to obtain the whole
rope, and by asking for omitted details to be filled in, I was able to
determine the extent to which the class understood the proposed sclution. And
I was able to keep their interest as well. Even then, the entire discussion
did not last more than fifteen minutes.

When it seemed to me that everyone in the class did understand how the -
rope thief could steal all two hundred feet of rope if there were a , 1
— — _ was ready for my punch line.

"That's & neat solution. If there were a , I can see how the
thief could get all the rope. Too bad there isn't. We don't have
any more time today to discuss this problew." (Many groans.)
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By the next week, several students had solved the problem.

It is not totally clear to me what happened in the minds of those students
during that last week. But certainly the discussion we had had was an
important step in the problem-solving process. The effect of Liz's question
was to make the problem easier. She changed the problem to a simpler, related
problem. Once this easier problem has been solved, the original problem, too,
is changed to & new one. Now the problem becomes: 1s there some way to obtain
or produce the desired device under the constraints of the original problem?

HINTS AND SOLUTION
First Hint

The question Liz asked that fourth week was, "How are the ropes attached
to the ceiling?"

"With very strong nails. Why do you ask?"

"Well, if only there were a hook, I can figure out a way for
the thief to get all the rope."

"Tell me."

Second Hint

"The thief climbs up one rope, grabs hold of the hook with one hand and
cuts both ropes loose with the other, but does not let them drop. While
holding onto the hook the thief ties the two ropes together to form a 20 metre
length, and then slips the two ropes over the hook so that the knot is on cne
side of the hook.

Now the thief can climb down to the floor while holding onto both ropes.
When the thief reaches the floor, the rope hanging on the side with the knot is
pulled. The other rope is pulled up and over the hook."

"That's a very nice solution. It's too bad there is no hook."
Solution

The Fifth Week. "I know how rhe rope thief can get almost all of the
rope. All the thief has to do is use a small part of the rope to make a hook.
For example, the thief could climb up one rope to the ceiling, cut the other
rope leaving ten centimetres. Use that ten centimetres of hanging rope to tie
a loop. The loop serves the same purpose as a hook. Now hanging onto the
looped ten centimetres of rope, the thief cuts off the first rope and ties
together the two loose pieces of rope to form a single piece 1990 centimetres
long. The thief slips one end through the loop until the knot reaches the
loop. Now the two ropes are hanging down from the loop as from the hook and
the solution proceeds as before."

In this way 1990 centimetres of rope can be obtained. Of course, the
total amount that the thief can steal is 200 - x, where x is the amount of rope

it takes to form a loop.
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Comments

The solution presented is not unique. It is not even the one I came up
with myself, but it is the one I hear most frequently. 1In a large group, a few
individuals usually think of making a loop right away. However, it is
important to keep them from saying anything aloud, thus destroying the
opportunity for the others to create for themselves. At the same time these
people should be credited with their ingenuity. Both objectives can be i

accomplished by asking the group to whieper sclutions to you or hold them until
the end of the meeting.

If you do give others the opportunity to create their own solutions, you
will be surprised by the many different ideas you will hear. This may help you
to become more free in your own problem-solving situations and, as a result, be
a better teacher of problem solving.

FROM THE EDITCR

"The Great Rope Robbery " is reminiscent of the
following problem adapted from the writings of Norman
R. F. Maier:

In a large room, two ropes hang from the ceiling
at a considerable distance from one another. One has
a small ring on its free end. The other has a small
hook on its free end. In the room are a ladder, a
chair, a table, a hammer, and a book. If the ropes
are too far apart to simply walk from one to the
other while holding the former, how might you
connect the two ropes without using any unmentioned
aids? Will your method always work? How is your
solution affected by shortening the lengths of the
ropes?

Thonnon
Anderson
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Problem Solving with Nim Games

by

Raymond E. Spaulding and David L. Albig
Radford University

The development of problem-solving skills should be a primary goal of any
mathematics program. Nim games are an excellent vehicle for the development
of problem-solving skills at all grade levels. Naturally the sophisticaticn
of the pgames presented to students will be a function of both grade level and
previous experience in problem-solving situations.

We will examine selected one-pile and two-pile nim games. One-
pile games are usually more elementary than two-pile games. A simple one-pile
game has the following rules:

(1) Form a pile with ten markers.

{2) Players alternate turns, each removing one or two markers
from the pile.

(3) The player who takes the last marker wins the game.

The teacher should explain the rules of the game and then allow students,
working in pairs, ample time to familiarize themselves with the game in
numerous contests. We believe adequate time spent allowing students to
investigate the game is essential to the development of sound problem—solving
skills. While this exploration time may appear to some as wasted and may even
try the patience of teachers, it will greatly enhance the chances that:

(1) students will truly understand the rules of the game;

(2) students will appreciate the need for a winning strategy;

(3) students will develop skills for solving problems on their
own and thus develop confidence in themselves.

Students who seem lost during this exploration time can be retrieved with
challenges from expert players, be they other students or the teacher.

This exploration phase should evolve naturally into what we call the
communication phase. Students should be encouraged to share their ideas and
conjectures about winning strategies. These communication activities are
valuable because they insure that students will:
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(1) consider several hypotheses and therefore develop skills in
the method of hypothesis construction and evaluation;

(2) practise verbal skills of self expression;

{(3) develop social skills in the process of arguing for and
against various conjectures;

(4) gain valuable feedback about their own conjectures by having
them subjected to scrutiny.

Teachers can structure these important communication activities by asking
some leading questions such as:

{1) 1In analyzing the game should you first consider what happens
at the beginning of a game or at the end?

(2) Would it help to keep a record of exactly what happens in a
few games? 1If so, what notation should be used to keep such
a record?

(3} 1If you were to find a winning strategy, what would it look
like?

(4) Are there any patterns which seem to develop in the games
which can be used to predict a winner?

(5) Can you make a conjecture concerning a winning strategy
which applies to at least part of a game?

(6) Having made a conjecture, can you test it by working out
several examples and eventually find a logical basis
for the conjecture?

(7) How can you expand your conjecture to the whole game?
Can you test the resultant conjecture?

By spending adequate exploration time and adequate communication time,
including attempts to answer some of the above questions, students will
discover that leaving your opponent a pile of three markers will make it
possible for you to win. Thus a pile of three markers is considered a ''safe"
position. Marker piles with one or two markers are considered "unsafe'
because the opponent can win if you leave him these positions. A winning
strategy conslsts of the ability to determine whether any position is "safe"
or "unsafe.” Any move the opponent makes on a "safe" position will leave an
"unsafe” position, and from any "unsafe” position there 1s always a way to
leave the opponent a "safe” position. If one plays so that a "safe" position
ig left after one's turn, a win is guaranteed.

The insights necessary to discover a winning strategy can be found by
using the important problem-sclving technique of organizing the data in
tabular form.

TABLE 1

bjo 1 2 3 4 5 6 7 8 9 10
] : |

b = the number of markers in the pile
s indicates a “safe" position
u indicates an "unsafe" position
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It is apparent that zero markers is "safe'"(s) to leave the opponent since
this is the goal of the game. On the other hand, one or two are "unsafe"
since the opponent will likely remaove all the markers and win the game. Three
markers in a pile is "safe" since any move the opponent makes on this position
leads to an '"unsafe" position. Asking the students to complete the table
forces them to focus on the next step in finding a winning strategy. Since
three markers in a pile 1s "safe,” four or five markers in a pile must be
"unsafe.” Continuing in thils way, students can complete the table and deduce a
winning strategy. Students can then test their results against each other or
the teacher.

The reader will note immediate possibilities for problems which require
students to generalize or change their strategies. Variables in the game are:

(1) onumber of markers in the pile initially;

(2) maximum number of markers which may be removed in a turn;
(3) which player will take the first turn;

{4) whether the player taking the last marker wins or loses.

As just one example, cconsider the ten marker one-pile game with the
foliowing rule modification. Instead of removing one or two markers in one
turn, allow players to remove one, two, or three markers. For this game the
player who is forced to take the last marker loses. The table of "safe" and
"unsafe" position then becomes:

TABLE 2

b 11 2 3 4 5 & 7 8 9 10
s u

u u u 8 u u u 5

b = the nuwber of markers in the pile
8 represents a "safe" position to leave an opponent
u represents an "unsafe" position to leave an opponent

In both of the nim games we have discussed the player who takes the first
turn can guarantee a victory. Thus there is no hope for a player who does not
get the first turn against a player who possesses and plays the winning
strategy.

Two-pile nim provides an excellent opportunity for students to improve
problem-solving skills acquired while studying one-pile nim. Again the rules
can be modified to provide many problem-solving experiences. A good
introductory game has the following rules:

(1) Form two piles of markers with five markers in one pile and
ten markers in the other.

(2) Players alternate turns, and during each turn a player may
remove one marker from either pile or one marker from
both piles.

(3) The player who takes the last marker loses the game.
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The learning steps required for the one-pile nim game remain valid for
the two-pile game. We believe these steps are vital to the development of
sound problem~solving strategies. Therefore we recommend:

(1) ample exploration time to investigate the game;
(2) ample time for students to share their ideas: productivity
of this communication phase may be enhanced by forming
teams, who woark together to decide on the next move; -
(3) ample time for organization of data, which, as before, can be
prompted by leading questions from the teacher;
(4) ample time for comstructing and testing hypotheses.

As we analyze this two-pile game, the concepts of "safe" and "unsafe"
positions to leave an opponent are useful.

TABLE 3

a
b 0 1 2131475 6 {7 |8 ]9 10
0 8 u s u s u | s u |s |u
1 3

2 | u

3 s

4 u

5 s

a = the number of markers in one pile
b = the number of markers in the other pile.

Previous experience with one-pile games should ensure that students can
f111 out the first row and first column of the table. In order to find more
"safe" positions, students must first discover that (1,1), (1,2), and (2,1)
are all "unsafe" because they can lead to the "safe" positions of (1,0) or
(0,1) in a single move. Thus (2,2) must be "safe" because any move made on
(2,2) leaves an "unsafe" postion. The entire table can be completed in
similar fashion, since every position which is "safe" leads to three "unsafe"
positions. These "unsafe" positions can then be used to find other "safe'
positions.

Once the table has been completed, a winning strategy has been found. A . "
problem which requires generalization of this winning strategy is created by
changing the number of markers placed in each pile initially. What if one
pile has 5,000 markers and the other had 495? Completing a table of this size
is not practical. Can students, given ample time and working together, find a
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simple tule which will indicate whether any given position is “safe” or
"unsafe™? Problem—solving skills required for this task include looking for
patterns within organized data, making conjectures concerning these patterns,
and testing these conjectures. Application of these techniques will lead
students to discover the "safe" positions. When only one pile has markers the
"safe'" positions are those with an odd number of markers in that pile and when
there are markers in both piles the "safe" positions are those in which both
piles have an even number of markers. After students have had time to
investigate the problem, organize data, make conjectures concerning possible
solutions, and establish for themselves by examples the validity of those
conjectures, rigorous definitions and proofs are appropriate for
mathematically mature students.

The goal of the two-plle game may be changed from (1,0), (0,1) to (0,0).
That is, the player who takes the last marker wins. For many of the games the
winning strategy changes drastically when the goal is changed.

In summary, nim games provide excellent opportunities for teaching
problem-solving skills because:

(1) the fact that they involve actually moving physical objects
implies that they are easily learned;

(2) the fact that they involve a competitive situation helps to
focus the students' attention on the problem; .

(3) simple rule changes create a variety of similar problems
which allow students to reinforce with practice newly
acquired problem-solving skills;

(4) they can be modified in order to find the appropriate game
for any age group or maturity level;

(5) they provide problem-solving activities different from those
usually found in complex word preoblems. Problem solving and
word problems are too often considered the same thing.
While word problems are important, they are by no means the
only vehicle for teaching problem-solving skills;

(6) nim games are rewarding for students in the sense
that the discovery of winning strategies:

(a) offers students great satisfaction in the knowledge
they have solved a problem through their own efforts,

(b) allows them to win all games or fully understand why
they cannot win, and

(¢) most importantly, develops problem-sclving strategies
which will be valuable throughout a lifetime!
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The Olympics - A Problem-Solving Plot

by

Shirely S. Heck and C. Ray Williams
The Ohijo State University

Problem solving involves critical thinking. Although new programs for
the gifted and talented focus on critical thinking skills, there is little
attention given to these skills in today's schools. Simply telling learners
that something is important is not very effective. Rather, we must help them
discover for themselves that critical thinking is important for societies in
general, and for each of them in particular. Students should be encouraged to
examine their own experiences, both direct and vicarious, to find out how
critical thinking, or a lack of it, has affected their lives and the lives of
others.

An interdisciplinary or thematic approach to teaching provides many
opportunities for structuring and analyzing problems which extend far beyond a
computational exercise. In reality, it places learning in its natural setting.
In its Recommendations for School Mathematics of the 80's, the National Council
of Teachers of Mathematics (1980) strongly supported this position:-

As new technology makes it possible, problems should be presented in
more natural settings or in simulations of realistic conditioms . . .
Mathematics teachers should create classroom enviromments in which
problem solving can flourish. Students should be encouraged to
question, experiment, estimate, explore, and suggest explanations.
Problem solving, which is essentially a creative activity, cannot be
built exclusively on routines, recipes, and formulas. (p. 3)

The daily newspaper can serve as an excellent means for applying
mathematics to local, state, national and international problems such as
environmental, cultural, social and technological issues. For example,
environmental and energy-related issues could be studied in terms of their __

— — — - —mathematical—problem=solving implications related to production, distribution
and use of energy. The problem-solving skills of describing, comparing,
contrasting, analyzing and evaluating could be reinforced by debating
controversial dilemmas, such as nuclear energy versus nuclear waste disposal;
strip mining of coal versus preservation of our natural landscape; school levy
taxes versus quality education; local taxes versus state taxation for schools
and so forth.
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Numerous problem-solving skills related to mathematics could be utilized
in publishing a students' newspaper or magazine. Examples of areas that might
be included are: mathematics crossword puzzles; a "Dear Math Challenger"
column in which students respond to problem questions submitted by other
students; the new invention of the month; a scientific breakthrough; classified
advertisements and problems related to these; editorials on the value of math;
a science experiment corner. In addition to seeing the relevance of math to
everyday problems and situations, publishing a newspaper would itself be a
problem-solving situation requiring problem-solving skills. Such factors as
costs, timing, communications, production, distribution, and labor are all
integral to a publication and create natural problem-solving experiences.

The focus of problem solving should be on a specific problem felt to be
relevant by the problem solver; it is, in fact, his or her involvement in the
problem that makes it a problem. While the teacher's role as questioner is
integral to the inquiry process, so too, the role of the children as
questioners and problem 'creators' is important. This requires a classroom
environment in which children feel free to question, to take risks, to
hypothesize, and to make mistakes.

Recording data, keeping track of resources, establishing assumptions and
considering viable alternatives, describing a given situation, and using
insight on the basis of observed patterns are desirable skills for people in
all walks of life. Numerous everyday activities can be used to reinfsrce the
development of these skills. Shields (1980) reports on how one fourth-grade
class tried to solve a continuing logistics problem in the school cafeteria.
The students worked on the various aspects of the problem for six weeks. The
culmination of these experlences was a set of proposals which could improve
service in the cafeteria. As a result of their work, several changes were
implemented and the students became anxious to attack other problems they found
arcund the school.

Another important problem-solving technique is the "open sentence." The
children write open sentences about pictures or story problems before they
begin to solve a given problem. Writing the open sentence beforehand requires
the children to stop and think about the problem situation: What do they know?
What don't they know? What is happening in the problem? How are the things
they know and do not know related? When the children actually write the open
sentence, they are showing how they interpret the problem. The sentence serves
as a summary of the information and relationships in the situation. When
children solve a problem using the open sentence as a guideline, they validate
the solution and also put the solutiom back into the context of the problem to
be sure it makes sense. This is in contrast to children who see two numbers in
a story problem and immediately add or subtract without thinking about the
problem.

The classroom environment can be designed to facilitate problem solving.
Instead of a "problem-free,” sterile environment, a more naturalistic setting
with situational and simulated problems can provide opportunities which demand
problem solving, decision-making, and research. A strategy used effectively
with both pre-service and in-service teachers was described by Heck and Cobes
(1977} in a book entitled The Creative Classroom Environment. 1In this strategy
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the classroom is perceived and compared loosely to a regular theatrical
setting. For example, when the curtain opens for a play, the audience becomes
aware of the time, place, and setting of the play through action, stage
scenery, and property. Similarly, simple representations constructed out of
cardboard can be used in the classroom at all grade levels to create an
illusion of time and place, creating a more naturalistic setting for simulated
problems. The ultimate development of the classroom as a stage-set design is,
of course, in the classroom where bullecrin boards, chalkboards, instructional
centres and arrangement of furniture can reflect the time, place, or concept
being studied. For example, the Olympic symbol of unity, posters of Olympic
events, international flags and the symbolic torch are sufficient to setr the
stage for an Olympic theme. Like the scenographic elements which support the
actor in his or her efforts on the stage, the stage-set design provides
additional stimulus to the children in researching and role playing many of
their learning experiences -- thus applying problem solving to many
unstructured and unexpected situations.

Teachers need not be artistic to design the creative classroom
environment. They can manipulate the classrcom environment with free or
inexpensive materials to make a specific unit of study come alive. A first
step might be to locate illustrations that depict the era or setting of the
unit being studied. Good rescurce materials for this activity could include
encyclopedias, basic histories, brochures from travel agencies, picture files
in the public library, and books or' slides. A second step in drafting the
design might be to visualize pieces or cutouts from the original illustrations
so that when seen in isolation and out of context they will cause the learner
to think about the original illustration. For example, Big Ben evokes thoughts
of London, or a skyline evokes the image of a large city. Three simple ways of
creating such illustrations include: (1) using an overhead projector to make a
line drawing; (2) using an opaque projector to make a silhouette drawing om any
type of materials including cardboard, paper or wood; and (3) using a slide
projector to project pictures which depict the desired image. Using any of
these three techniques, one could eliminate the precise scaling process used in
theatrical stagecraft. For younger children, the teacher might provide much of
this environment; older children could be given the problem of developing their
own setting unique to a specific area of study. The problem solving and
mathematical skills that could be developed through such an assignment are
significant. '

One example of a stage—set design developed with children in grades &4 to
6 was a unit pertaining to the 1980 Winter Olympics. First, the classroom
teachers identified the areas of children's needs (i.e., geometry, measurement,
decimals, and monetary skills). Since the winter Olympics were in process and
were of great interest to the students, this theme was selected and
incorporated into the instructional areas of mathematics identified by the
teachers. The selection of a relevant theme_and one which-was-ef—interest—to— —
— - — — —the—students was critical to having a positive effect om children's thought
processes and enhancing confidence in their problem-solving ability.
Integrating the various subjects into a high-interest theme provided a
meaningful opportunity for these children to realize the necessity of
considering, testing, and re-evaluating problems - a process which is an
integral part of their lives.
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A creative classroom environment does not necessarily teach a child what
to think, but rather assists him or her in how to think. A stimulating
environment provides the motivation for a child to become a miniature
researcher through the processes of reading, living, and recalling. Through
.discoveries and explorations children can develop a more complex frame of
reference from which generalizations can be derived and applied to the present
and future.

An interdisciplinary unit on the Olympics can promote critical thinking in
students. The teacher needs to consider inveolving higher level objectives.
Learner tasks such as identifying the cities in which the Olympics were held,
researching the history of the Olympics and reporting this on a timeline that
includes national and international events represent the lowest level of
information; conversely, activities which require more problem-solving skills
correspond with the higher level thought processes of application, analysis,
synthesis and evaluation. Examples of activities which require these higher
level problem=-solving skills might include simulating a trip to the Olympics
with §1,000.00 per person where numercus decisions need to be made regarding
ladging, transportation, food and events; forming an Olympic Committee to
decide how to raise funds through advertising; inventing & more aerodynamic
model of a bobsled; producing a scale model of an Olympic Village which
includes the sports and housing areas and the costs involved in constructing
the village; and evaluating the media coverage of the Olympic Games.

Within the stage-set design numerous research activities that promote
problem—-solving skills can be formulated to include areas of study such as
sociology, anthropology, geography, history, economics, and political science.
For example, an activity in which the students identify the cities where
Olympics were held and the reason for selecting specific clties js applicable
to the study of geography. In studying socioclogy, anthropology, or political
sclence, a debate on the pros and cons of boycotting the 1980 Olympic Games
would be an excellent activity. Role playing also becomes very natural within
the stage-set design environment. Imagine the problem-solving and
decision-making skills involved in role-playing the Olympic boycott decision
from the viewpoint of the Canadian and Rugsian- athletes, the parents of the
athletes, the Prime Minister of Canada, the Russian and Afghanistan people, the
Russian business community, the T.V. networks, the Olympic Committee, etc.

As a culminating activity to the Olympics Unit described earlier, the
children were asked to develop a set of problems related to mathematics.
Developing a problem is a problem itself. It serves as an excellent strategy
for developing the skills of describing, observing, classifying data, and
analyzing situations. While the children were given no guidelines in terms of
specific problems, it was extremely interesting to observe that the problems
they created were related to the areas of need identified by the teachers prior
to the implementation of the unit. In addition, the children developed various
levels of questioning. The problems ranged from very simple one-step processes
to more complex processes.

Examples of students' problems related to measurement included the
following:
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If the Olympic track was 400 metres, how many times would a runner
have to run it for a 5000 metre race?

Leah Mueller skated the 5000 metre race in 7 minutes and 56
seconds. The first 1000 metres took 1 minute 28 seconds. Her last
1000 metres took ]l minute 37 seconds. How long did it take Leah to
skate the middle 3000 metres?

The high jumper made 3 jumps. His first jump was 2 metres 37
centimetres. His last jump was 2 metres 43 centimetres. His 3
jumps totaled 7 metres 21 centimetres. How high was his second
jump?

If an Olympic swimmer swam an average of 25 metres in 38 seconds,
how long would it take her to swim 100 metres? 500 metres?

The Swedish ski jumper's first jump on the 70 metre ski jump was 87
metres. His second jump was 89 metres 58 centimetres. How much
shorter was his first jump? How long were his jumps when added
together?

Through activities the children learned the value of a well-balanced diet
for the athlete and what exercises an athlete might do in a day's training.
The students also studied the effects of drugs, alcohol and tobacco on the
body. Mathematical problems related to body exercise and practice became
natural to the situation. These were reflected in the problems designed by
the elementary school children.

For example:

Eric Heiden, the speed skater, trained an average of 6 hours a day,
5 days a week for the last 3 years to prepare for the 1980 Olympics.
How many hours has he trained for the Olympics?

Design a week's nutritious menu for the 10 American hockey players.
Include a daily snack for after "work-out" time. Using Safeway's
newspaper ad, figure out the cost of the week's menu for the team.

Examples of monetary problems by the students included the following:

Linda Fratianne has 3 costumes she could wear for her performances.
The total cost of the costumes was $261. What was the average cost
per costume?

The Gg}d Medals are made oqut of gold and—silver~ —There iszbout™ — —
—— — T T T 7777%126.00 worth of gold, and $332.00 worth of silver in each Gold
Medal. Eric Heiden won 5 Gold Medals. How much are his medals

worth altogether?

One meal (supper) for a hockey player cost $6.25. How much would
the meal cost for the whole Canadian team if all 20 players ate?
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Mary Wilson bought dinner for her 3 friends at a good restaurant at
Lake Placid. Mary's lobster dinner cost $18.00 for everything.
Together, all 4 meals cost $75.87. What was the average cost for one
of Mary's friend's meals?

You used 400 litres of gasoline to drive to Lake Placid and back to
your home. The gasoline cost $148.00. How much did the gasoline
cost per litre?

An Olympic visitor bought 8 tickets for 3 events. 2 tickets cost
$8.50 each, 3 cost $15.25 each, and 3 cost $9.00 each. How much did
the visitor pay for all 8 tickets?

The problems created by the students often included irrelevant data, as

illustrated in the following examples:

John Smith drove to Lake Placid for the Olympics. It took him 8
hours to get there.. He used 250 litres of gasoline, and traveled
548 kilometres. How much did John average in speed per hour?

The four men in the 4-man bobsled totaled 780 1bs. The weight of
the men and the bobsled totaled 1985 lbs. What was the average
weight of the men? :

Juri Svenson of Norway is a ski jumper. He is 23 years old and has
trained 36 hours a week for the last 3 years. His two jumps at the
90 metre jump totaled 245 metres. His first jump was 122 metres.
How long was his second jump?

All children should have the chance to develop their problem-solving

abilities, and in turn, develop their minds in order that they might enjoy a

fuller life. An interdisciplinary unit of instruction with diversified
problem-solving activities allows children to utilize their parcicular

learning styles. Whether they learn best through concrete experiences or more

abstract presentations, this approach provides for meaningful experiences.
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Romance in Problem Solving
by

H. Laurence Ridge
University of Toronto

S50 as not to disappoint those who have read the title in a vernacular
sense, here 1s a math dilemma based on matrters of the heart.

On Friday evenings, planes leave Edmonton International at
hourly intervals for Vancouver and at hourly intervals for Calgary.
Ms. Thema Mattix, a liberated Edmonton math teacher, has an admirer
in both of these cities and decides which one she will visit each
weekend by taking the first plane out after she reaches the airport.
Although school circumstances and variable traffic conditions make
her arrival time at the airport completely unpredictable, she finds
herself in Vancouver four weekends out of five. How is this
possible?

The term 'romance' actually refers to the first stage of Whitehead's
three cycles of intellectual activity: ‘"romance, precision, and X
generalization” (as set out in The Aims ¢f Education). The romantic stage 1is
characterized as follows:

The first procedure of rhe wmind in & new environment is a somewhat
discursive activity amid a welter of ideas and experience. It is a
process of becoming used to curiocus thoughts, of shaping questions,
of seeking for answers, of devising new experiences, of noticing what
happens as a result of new ventures. This process is both natural
and of absorbing interest. (p. 32)

In case you read into these remarks a call for Summerhill-style (total)
freedom, Whitehead hastens to add: ‘

This stage of development requires help and even discipling.--The— — - —— ———
- — — —environment within whHich the mind is working must be very carefully
selected... [However,] a block in the assimilation of ideas
inevitably arises when a discipline of precision is imposed before a
stage of romance has run its course in the growing mind. ... The
cause of so much failure in the past has been due to the lack of
careful study of the due place of romance. [Precision] has been the
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sole stage of learning in the traditional scheme of education. [To
sum up,]} without the adventure of romance, at the best you get inert
knowledge without initiative, and at worst you get contempt of ideas
- without knowledge. (pp-32-33)

In the realm of problem solving as considered in most schools, 1 see the
stage of romance as a period of 'mucking about' - as the British vernacular
would have it - brainstorming and experimenting with various strategies
virtually uninhibited by rules or algorithms. Call it "development of
heuristics" if you will. But - the problems have to be appropriate. The
environment must be right - as per Whitehead.

Rather than go right away to the currently fashionable non-algorithmic
process problems 3% la Carole Greenes and others, let's consider a more
romantic approach to some traditional text-bock-style problems, an approach
which may both assist the lesser able student and also offer further insights
to the more mathematically able folks. ’

The treatment presented in this paper is essentially one of numerical
analysis which involves the freedom of romance as a reasonable starting point.
The methods suggested do lead to precision and even generalization stages.
Overall, the message is that much more can be derived from text-book-style
problems than arises from the traditional algebraic algorithmic approach. For
some readers the approach may smack of too much precision albeit a different
form than the traditional algebraic algorithmic approach. From a comparative
and realistic point of view, however, the amount of investigative freedom
encouraged by the approach is considerable.

Traditionally, when we encourage students to develop 'alternative
solutions', our expectations are usually at the precision stage. Here is a
case in point.

Solve i1n as many ways as you can.

The sum of three counsecutive integers is five more than the sum of
the least and the greatest of the consecutive numbers.
What are the numbers? ’

What we as teachers might expect, or at least, what students would think we
expect 1s a variety of algebraic solutions such as:

1 II ITI

Let x represent the Let x represent the Let x represent the
smallest of the three| greatest of the three| middle integer of the
congsecutive integers.| consecutive integers.| three consecutive

Then the other two Then the other two integers. Then the
integers are x+l1 and integers are x-1 and other two integers are
x+2. x-2. x-1 and x+l.

{(The third approach is considered to be the most clever since a sum is
involved and the constant terms will vanish.)
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Now, for students who may be having difficulty with algebraic expressions
and equations and in order to introduce what can be an insightful approach,
suggest that they try a "guesstimate" of what the three numbers might be. The
idea is not to come up with a correct answer via guessing, nor to keep
guessing until a correct answer is found, nor to keep making adjustments on
the basis of 'too high' or 'too low'. The purpose of this romantic playing
with numbers is to investigate the structure underlying the problem. What is
really happening to numbers when they are combined as the problem dictates?

No matter what trio of consecutive integers is chosen, there has to be a check
as to whether this trio solves the problem. For example, should 7, 8, and 9
be selected, the sum of the integers 1s 24 but when 5 is added to the sum of
the greatest and the least, the sum is 21.

It is at this stage that some teacher guidance would be appropriate.
Students should be encouraged:

a) to write down what they are doing, and
b) to write it down in unsimplified form

so that patterns can be observed more readily.

The above check of 7, 8, and 9 could easily be done mentally as could

checks on several other guesstimates. This style of romantic venture, however,

could deteriorate into a guess-til- you= get~there approach whlch would not
serve the solver particularly well in the long run.

The following is a suggested checking format. The assumption here’is
that for lesser able students it is easier to check a proposed answer than to
formalize one in the first place.

GUESSTIMATE: 7, 8, 9

CHECK: 7 + 8 + 9 7+ 9+ 5]
= 24 = 21

The fact that 7, &, 9 is not the sought after trio pales upon realization from
the check that the [5] must be the middle number of the trio in order to make
the sums equal. Should such insight into the 4, 5, 6 solution not arise, the
development of a routine for checking any guesstlmate leads to a pattern for
solution by more precise means.

The romantic aspect lies in the solver's being able to start anywhere and
continue in such a fashion, not looking for the answer so wmuch, as for a
pattern which may lead to a more precise or insightful approach to the
problem. Should a solution arise during such an initial procedure, that is a
bonus. It must be emphasized that this romantic playing with numbers is not

If a successful trio has not emerged, let's finally take the “numbers
that work.” For three consecutive integers, we'll need a smallest 'number', a
second one or 'number + 1', and a third one or 'number + 2'. (These
expressions arise from student experlence with specific consecutive triples of
integers.) Using the format of the 'check', we have:
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Number + (Number + 1) + (Number + 2) = Number + {(Number + 2} + 5
[EXPLANATION: The "=" sign
1s used because thesge are

the “numbers that work.”
The sums have to be equal!]

or simply,
n+(n+1)+ (n+2)=n+(n+2)+5, etc.
What we have then, is a romantic approach to a precise method.

'Age problems' can be interesting. WNote that this one is set in
something of a puzzle motif - again - creating an environment.

"You've got to be kidding!!"

John is 19 years old and his sister Susan is only
1 year old. 1In how many years will John be:

a) 7 times as old as Susan?

b) 4 times as old as Susan?

c¢) only twice as old as Susan?
d) the same age as Susan?

Strategy I: Use guesstimation to help form an equation.

Guesstimate John's age Susan's age
8 (years) 19 + 8 = 27 _ 1+8=29

but 27 £ 7 x 9

(After a sufficient number of guestimates to
see the pattern of checking ...)

Number that works: n (years) 19 + n = 7(1 + n) , etc.

Strategy 1I: Systematic numerical analysis (which adds a dimension of
precision to a romantic beginning)

Such an appreoach may well be suggested during a romantic interlude with
numbers. It might be noted by chance that

19 + 8 = 3(1 + 8)

or that there are other integral age relationships not even menticned in the
problem. This raises the question as to what other integral multiples are
possible. (Hence we have a suggestion of generalization even within a
romantic context.)
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Let's start right from ground zero to see just what is going on.

Number of John's Susan's Integral
years from age age multiple

now (years) (years) ?

0 19 1 19 = 19 x 1

1 19 + 1 1 +1 20 = 10 x 2 -
2 19 + 2 1 +2 21 = 7 x 3 AHA! - part a solved!)
3 19 + 3 1 +3 No |

4 19 + 4 1 + 4 No

5 19 + 5 1 +5 24 = 4 x 6 (Part b)

6 19 + 6 1 +6 No

7 18 + 7 1 +7 No

8 19 + 8 1+8 27 =3 % 9

9 19 + 9 1 +9 No

10 19 + 10 1 + 10 No

11 19 + 11 1 + 11 No, but get 30 = 2.5 x 12 (How

12 19 + 12 1 + 12 No much farther to go?

13 19 + 13 1 + 13 No

14 19 + 14 1 + 14 No

15 19 + 15 1+ 15 No

16 19 + 16 1 + 16 No

We might note at this time

that

even result (divisible by 2).

17

19 + 17

1+ 17

only odd numbers added to 19 will give an

Finally! 36 = 2 x 18 (Part c)

It is interesting to note that no matter what the age difference, if any two
people live long enough one will be twice as old as the other, and, regardless
of their birthdays, will be twice as old for a period of time totaling one

year.

Now, how long will it take to get to 1, that is, the same ages?

Although the question in part d is absurd on the basis of common sense
{since there is always a difference of 18 years) it leads to a more precise
consideration of the relations among numbers based on the above analysis.

Number of John's Susan's Integral
years from age age multiple
now (years) (years)
n 19 + n 1 +n k
— — - -—If nand ¥ dré "numbers that work,"” then -

19 + n

k(L + n) (&)

Now, to be 'precise', let's see what limitations there are on k.
P
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_19 4+ n
k= Il +n
. . 19 + n .
As n gets increasingly large, 1 + ngets closer to l. More precisely,
19
19+ n= n+l —pl asn=>200
T +n 1 (n increases indefinitely)
n+ 1

{gince 1 and 13 —_ ()
n n

(A practical application of this phenomenon can be seen with older people.
The older they get, the less difference there appears to be in their ages even
though the numerical difference is constant.)

19 + n

To see mathematically that k cannot be one even though.the ratio + o

can be made as close to one as we please by taking n large enough, write
equation (#) as 19 + n = k + kn and solve for n to get

n = i%—f—% , 80 long as k # 1.

Hence for integral n, k cannot be 1. This treatment could be generalized and
thereby lead to the concept of 'limit of a sequence'.

Another way of looking at the relative behaviours of n and k is to apply
a number theoretic approach when

19 + n

k = l1+n

and write it in the form k =1 + upon division by 1 + n. From this
form it can be seen that k is integral only when n + 1 is a factor of 18, that
is, when n =0, 1, 2, 5, 8, and 17. These values of n correspond to k = 19,
10, 7, 4, 3, and 2, respectively. Similarly, the equation

219 -k
n k - 1
can be written in the form
“='1+-k1§1

From this form it can be seen that n is integral only when k - 1 is a factor
of 18, the difference in the ages. This condition yields the same pairs of
integers as above.

Here we have seen a case of an initial romantic investigation suggesting
a more systematic search of a relationship within a seemingly inocucus problem
which in turn has led to an intuitive treatment of the limit of a sequence.
Once a romance has been started who knows where it may lead? Oh, yes. Each
plane for Calgary leaves 12 minutes after a Vancouver plane.
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Looking Back —
| ooking Ahead




Recent Advances in Mathematics
Education:
Ideas and Implications
by

Alan H. Schoenfeld
Hamilton College

There have been major changes in mathematics education research over the
past decade. Research in education is now highly interdisciplinary, with
contributions from cognitive psychologists, workers in artificial
intelligence, etc. There are new people, new perspectives, new methodologies
-- and most important, new results. Taken as a whole, these results promise
to re-shape our understanding of the learning and teaching processes. In this
paper I will discuss one aspect of recent work, and its implications.

The three examples I'm going to discuss in this paper seem on the surface
to have little to do with each other. John Seely Brown and Richard R. Burton
have done a detailed analysis of the way elementary school children perform
certain simple arithmetic operations. John Clement, Jack Lochhead, and Elliot
Soloway have studied the way that people translate sentences like "There are
six times as many students as professors at this college" into mathematical
symbolism. My work consists of an attempt to model "expert' mathematical
problem solving, and to teach college freshman te "solve problems like
experts."” Yet all three of these studies share a common premise, and their
results tend to substantiate it. That premise is the following:

There is a remarkable degree of consistency in both correct and
incorrect mathematical behavior on the part of both experts and
novices. This consistency is so strong that it may often be
possible to model or simulate that behavior, at a very substantive
level of detail.

The implications of this assumption for both the teaching and learning
processes are enormous. First, consider the notion that much of ocur students'
incorrect behavior can be simulated -- and hence predicted. This means that
many of their mistakes are not random, as we often assume, but the result of a
consistently applied and incorrectly understood procedure. In consequence,
the student does not need to be "told the right procedure”; he needs to be
"debugged." This idea lies at the heart of the Brown and Burton work. It is
also central to Lochhead and Clement's work, where we will see that the simple
process of translating a sentence into algebraic symbols is far more complex
than it at first appears. The other side of the coin has to do with the

127



consistency of expert behavior. That, of course, is the assumption made in
artificial intelligence -~ where the attempt is made to model expert behavior
in enough detail so that it can be simulated on a computer. If that seems
plausible, then another step should seem equally plausible: model expert
behavior so that humans, rather than machines, can simulate it. That is,
teach students to "solve problems like experts" by training them to follow a
detailed model of expert problem solving. That is the idea behind my own
work.

1. A Close Look at Arithmetic.

In this section 1 offer a distillation of Brown and Burton's paper
"Diagnostic Models for Procedural Bugs in Basic Mathematical Skills." There
i5 much more in that paper than I can summarize here, and it is well worth
reading in its entirety.

The key word in the title of their paper is "bug." It is, of course,
borrowed from programming terminology -- and is fully intended to have all of
the connotations that it usually does. While a sericusly flawed program may
fail to run, a program with only one or two minor bugs may run all the time.
It may even produce correct answers most of the time. Only under certain
circumstances will it produce the wrong answer -- and then it will produce
that wrong answer consistently.

Often one discovers a bug in a computer program when it produces the
wIrong answer on a test computation. One might hope to find the bug by reading
over the listing of the program and catching a typographical error or
something similar. It is usually easier, however, to trace through the
program and see when it makes a computational error. At that point, one knows
where the source of difficulty is and can hope to remedy it. 1f the basic
algorithm were simple enough, it might be possible to guess the source of
error by noticing a pattern in the series of mistakes it produced. Thus one
might be able to find the bugs in a program -—- without even having a listing
of it. For example, see if you can discover the bug in the following addition
program from the five sample problems.

41 328 989 66 216
+9  +917 +52  +387 +12
50 1345 1141 1053 229

Of course, if you don't have a listing of the program, you can never be
certain that you have the right bug. However, you can substantiate your guess
by predicting in advance the mistakes that the program would make on other
problems. For example, if you have identified the bug which resulted in the
answers in the previous five problems, you might want to predict the answers
to the following two:

e — - kA6 20T T
+815  +399

This particular bug is rather straightforward. We can get the same answers as
the program for each of the five sample problems by "forgetting'" to reset the
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"carry register" to zero: after doing an addition which creates a carry in a
column, simply add the carry to each column to the left of it. For example,
in the second problem, 8 + 7 = 15 so we carry 1 into the second column. That
gives us a sum of 4. If the 1 is still carried to the third column, that
gives ug 1 + 3 + 9 = 13, The same difficulties arise all the way across the
board. Using this bug, one would predict answers of 1361 and 700 to the two
extra problems.

A student might have cthis "bug" in his own arithmetic procedure, just as
the computer program might. In fact, a child might well use his fingers to
remember the carry, and simply forget to bend the fingers back after each
carry is added. This would produce exactly the bug above.

The finding of bugs is far more than an exercise in cleverness: it has
tremendous implications for the way we teach. The naive view of teaching is
that the teacher's obligation is to present the correct procedure coherently
and well, and that if anything goes wrong, it is simply because the students
have not yet succeeded in learning that procedure. The above example (and
many more in the text) suggest that something very different is happening.
Suppose a student is making consistent mistakes. The teacher who can diagnose
such a bug in that student stands a decent chance of being able to remedy it.
The teacher who looks at the student's mistakes and concludes from them simply
that the student has not yet learned the correct procedure, is condemned
simply to repeat the correct procedure -= with much less likelihood that the
student will perceive his own mistakes and begin to appropriately use the
correct procedure.

I1f one makes the assumption that a student's behavior is consistent when
it is wrong, then the issue appears to be theoretically simple. You begin
with the correct procedure, and then at each step genmerate what might be
considered plausible bugs. Next, you create a series of test problems so that
the student's answers to those problems indicate his bugs. Finally, after
identifying the bugs, you intervene directly to remedy them.

While this theory may sound remarkably simple, the implementation is
actually quite complex. First, it is a surprisingly complicated task to write
down all the operations that one has to do to add or subtract two - three
digit numbers. Primitive operations involved in subtraction, for example,
include knowing the difference between any two single digits, being able to
compare two digits, knowing when it is appropriate to borrow, being able to
borrow, knowing to perform operations on the columns in sequence from right to
lefr, and many, many more primitive operations. Any flaw in one of these
procedures causes a bug which needs to be diagnosed; flaws in more than one
procedure cause compound bugs which may be even more difficult to diagnose.
Brown and Burton hypothesized the following list of nine common procedural
mistakes in the simple subtraction algorithm. When one considers possible
combinations of these, things start to get out of hand very rapidly.

143 The student subtracts the smaller digit in each column
-28 from the larger digit regardless of which is on top.

1

wn
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143 When the student needs to borrow, he adds 10 to the top
-28 digit of the current column without subtracting 1 from
125 the next column to the left.

1300 When borrowing from a column whose top digit is 0, the
=322 student writes 9 but does not continue borrowing from
878 the column to the lefr of the O.

140 Whenever the top digit in & column is 0, the student
=21 writes the bottom digit in the answer; i.e., O0-N = N.
121

140 Whenever the top digit in a column is 0, the student
=21 writes 0 in the answer; i.e., 0-N = 0.

120
1300 When borrowing from a column where the top digit is 0,
=522 the student borrows from the next column to the left
788 correctly but writes 10 instead of 9 in this column.
321 When borrowing into a column whaose top digit is 1, the
=89 student gets 10 instead of 1l.

221

662 Once the student needs to borrow from a column, he
-357 continues to borrow from every column whether he

205 needs to or not.

662 The student subtracts all borrows from the left-most
=357 digit in the top number.

215

Based on the premise that students do indeed follow certain consistent
procedures, Brown and Burton tested this list empirically with the scores of
1325 students on a l5-item subtraction test. Their data indicates that more
than 40 percent of the errors made on the test could be attributed to "buggy"
behavior. 1In particular, more than 20 percent of the solution sheets were
entirely consistent with one of their hypothesized bugs. (That is, all of the
answers were exactly what that particular faulty algorithm would produce.)
Another 20 percent of the sclution sheets indicated behavior which was
strongly consistent but not identical with such a bug.

Further, the analysis of the students' performance on this test, led to
the identification of new "bugs.” Of the 1325 students tested, 107 students
had a bug in their "borrow from zero" procedure. In consequence, they had
missed all 6 of the 15 problems on the test—whichcalled £oTr borrowing from

_ — — — —zero. Inthe original interpretation of the data, those 107 students were
simply identified as students who scored 60 percent. Later they were
identified as students who have not yet mastered the technique of borrowing
from zero.
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2. A Look at "Simple™ hord Problems.

For a number of years, a group at the University of Massachusetts at
Amherst has been studying a variety of students' misconceptions in
college-level physics and mathematics. This discussion is based primarily on
two of their working papers, "Translating Between Symbol Systems: Isolating a
Common Difficulty in Solving Algebra Word Problems'" by John Clement, Jack
Lochhead and Elliot Soloway, and "Solving Algebra Word Problems: Analysis of
a Clinical Interview" by John Clement. These papers deal with college-level
students, and {at least at first) with subject matter "appropriate" for
students at this level. Yet, there are two very strong similarities between
this work and the work described in section 1. First, a process which is
"simple" to do correctly may be a rich source of potential errors. Second,
there ig an almost remarkably perverse caonsistency in the way that students
make mistakes —- to the point where remediation is rather difficult, even if
one understand what the student is doing. - Finally, there is an interesting
contrast between the "static" nature of mathematical language and the
"dynamic" nature of a programming language.

Since Clement, Lochhead, and Soloway were dealing with college-level
students, the authors began with problems of some complexity. One problem,
for example, asked the student to determine what price, P, to charge adults
who ride a ferry boat, in order to have an income on a trip of D dollars. The
students were given the following information: There were a total of L people
(adults and children) on the ferry, with 1 child for each 2 adults; children's
tickets were half price. The students were asked to write their equation for
P in terms of the variables D and L. When fewer than 5 percent of the
students given the problem solved it correctly, the authors began to use
simpler and simpler problems. After a sequence of increasingly easier
problems, they wound up using problems like the ones given in Table 1.

Table 1

1. Write an equation using the variables S and P to represent the
following statement: "There are six times as many students as professors at
this University." Use S for the number of students and P for the number of
professors.

2. Write an equation using the variables C and S to represent the
following statement: "Ar Mindy's restaurant, for every four people who
ordered cheesecake, there are five people who ordered strudel." Let C
represent the number of cheesecakes and § represent the number of strudels
ordered.

3. VWrite a sentence in English that gives the same information as the
following equation: A = 75. A is the number of assemblers in a factory. €&
is the number of solderers in a factory.

4. Spies fly over the Norun Airplane Manufacturers and return with an
ﬁerial photograph of the new planes in the yard.
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They are fairly certain that they have photographed a fair sample of one
week's production. Write an equation using the letters R and B that describes
the relationship between the number of red airplanes and the number of blue
planes produced. The equation should allow you to calculate the number of
blue planes produced in a month if you know the number of red planes produced
in a month.

The correct answers for these four problems are (1) S = 6P, (2) 5C = 48§, .
(3) "There are 7 assemblers for every solderer,"” and (4) SR = 8B. The success
rates for these four problems were 63, 27, 29, and 32 percent, respectively.

It might seem at first that the researchers had simply found a bunch of
students who were extremely defective in their algebraic skills. However, the
students had been given the following six questions:

1. Solve for x: 5x = 50

£ =3
4 X

2. Solve for =

3. Solve for x in terms of a: 9a = 10x

4. There are 8§ times as many men as women at a particular school. 50
women g0 to the school. How many men go to the school?

5. Jones sometimes goes to visit his friend Lubhoft driving 6 miles and
using 3 gallons of gas. When he visits his friend Schwartz, he
drives 90 miles and used _] gallons of gas. (Assume the same driving
conditions in both cases.)

6. At a Red Sox game there are 3 hotdog sellers for every 2 Coke
sellers. There are 40 Coke sellers in all. How many hotdog
sellers are there at this game?

On average, more than 95 percent of these problems were solved correctly.

Therefore, the difficulties of these college students were not in simple

algebraic manipulations. The difficulties were in translating a statement

from a sentence into a suitable algebraic form. Actually, the students were

very competent in courses beyond algebra. Clement's paper provides a detailed

analysis of the transcript of a problem-solving session with one student who

was doing B+ work in a standard calculus course at the time of the interview,

and had been able to differentiate the function f(x) =-ifjii_L_gapidlyrﬁusingf——--—*——“——*
the chain rule, without difficulty-—Yet,The §fudent was unable to solve any

—— — — - »f the problems in Table 1. -

As in the Brown and Burton work, the students' errors were remarkably
consistent for all of the problems in Table 1. More than four-fifths of the
incorrect solutions to the problems were of the form 68 = P, 4C = 5C, "Seven



solderers for every assembler", and 8R = 5B, respectively. In other words,
there was a consistent reversal of the symbols and their role in the
equations.

Through an analysis of clinical interviews, the authors identified two
major causes for the reversal. The first explanation for the reversal was
that the students made a "syntactic" tramslation of a sentence into algebraic
form; i.e., the student reads along the sentence, replacing words where
appropriate by algebraic symbols. Thus, "six times as many students'" becomes
65; "as" becomes equals, and "professors" becomes P. The resulting equation
is 65 = P.

The second explanation for the reversal was that although the students
recognized that an equation does stand for a relationship between two
quantities, the way that the students represented that relationship to
themselves resulted in a reversal. Many of the students, for example, drew
pictures such as:

© 660 ©60 606

On one gide of the desk is the professor; on the other side are the 6
students. Thus the equality is 6§ = P.

To the mathematician, an equation for the "students and professor's"
problem is a device which allows him to calculate the number of students given
the number of professors, or vice-versa. Since there are 6 times as many
students as professors, one must multiply the number of professors by 6 to get
the number of students (for example, 10 professors yield 60 students). Thus,
§ = 6P. Qbvicusly, students do not have this perspective.

In another experiment, the authors provide some dramatic evidence of the
difference between the static and dynamic interpretations of an equation.
Their "subjects" were 17 professional engineers who had between 10 and 30
years of experience each. The engineers had come to take a course in the
BASIC programming language. On the Eirst day of the course, the engineers
were asked to write an equation for the following statement:

At the last football game, for every four people who bought
sandwiches, there were five who bought hamburgers.

Only 9 out of 17 of the engineers solved the problem correctly. The follawing
day, without any discussion of the previous problem and the solution to it,
the engineers were asked to write a computer program for the following:

At the last company cocktail party, for every 6 people who drank
hard liquor, there were 1l people who drank beer. Write a program
in BASIC which will output the number of beer drinkers when supplied
with the number of hard liquor drinkers.

All 17 of the engineers solved the problem correctly. The authors
further substantiated these results with a study of some college students in a
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programming course. The notion of programming suggests a possible means of
remediation: If we trein students to think of an equation as a "program' with
inputs and outputs, we may increase the likelihood of their getting the
correct answers.

3. A Look at Problem Solving.

Apparently random problem-solving behavior can actually be quite
consistent. In the work with BUGGY and with elementary word problems, the
focus was on consistent patterns of mistakes, for purposes of diagnosis and
remediation. 1In this section we look at the flip side of the coin. Just as a
look beneath the surface discloses consistency in novices' incorrect behavior, -
a look beneath the surface will alsc disclose great consistency in the
prablem-sclving behavior of experts. To wmake the point that experts and
novices approach problems in dramatically different ways, consider the
following three problems -- all of which are ostensibly accessible to high
school students.

Problem i: Let a, b, ¢, and d be given numbers between U and 1!.
Prove that {(l1-a)(l-b)(l-c}(i-d) > l-a-b-c-d.
+

Problem 2: Determine the sum + ... *

1+2
21 31

.
{n+l)!.
Problem 3: Prove that if 2" - 1 is a prime, then n is a prime-

On problem ] most students will laboriously multiply the four factors on
the left, subtract the terms on the right, and then try to prove that
(ab+ac+ad+bc+bd+cd-abc~acd-bcd+abed) > 0 ~- usually without success.

Virtually all the mathematicians I've watched solving it, begin by proving the
inequality (l-a)(l-b) > l-a-b. Then they multiply this inequality in turn by
(l=-¢) and (1-d) to prove the three-and four-variable versions of it.

Likewise in problem 2, most students begin by doing the addition and
placing all the terms over a common denominator. A typlcal expert, on the
other hand, begins with the observation, "That looks messy. Let me calculate a
few cases.” The inductive pattern is clear and easy to prove.

The expert who read problem 3 and said "That's got to be done by
contradiction" was typical (given the structure of the problem, one really has
no alternative). Yet this almost automatic observation by experts was alien
to students. A large number of the students to whom I have given the probliems
either responded with comments like "I have no idea where to begin" or tried a
few talculations to see whether the result is plausible and then reached a
dead end.

[ ——

[

Of course these are special R;ob1em§4_£ﬂz_uhich—expert‘hﬁa—BEVIEE—
_performance are—each—im théir own way remarkably consistent. While che -
" experts did not consciocusly follow any strategies, their behavior was at least
consistent with these "heuristic" suggestions:
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a. For complex problems with many variables, consider solving
an analogous problem with fewer variables. Then try to
exploit either the method or the result of that solution.

b. Given a problem with an integer parameter mn, calculate
special cases for small n and look for a pattern.

¢. Consider argument by contradiction, especially when extra
"artillery" for solving the problem is gained by negating
the desired conclusion.

Many of the novices were unaware of these strategies, and many others "knew of
them" (that is, upon seeing the solutien they acknowledged having seen similar
solutions)}, but hadn't thought to use them. Expert and novice problem solving
are clearly different. The critical question is: Can we train novices to
solve the problems as experts do?

There are a number of obstacles. First, we have to factor ‘out simple
subject matter knowledge: There is no way that one can hope to give the
students experience before they have it, or to compensate for it. Rather, we
would like to provide the students with strategies for approaching problems
with flexibility, resourcefulness, and efficiency.

Second, we must realize that the heuristic strategies described by Palya
are far more complex than their descriptions would at first have us believe.
Consider the following strategy and a few problems.

"To solve a complicated problem, it often helps to examine and solve a
simpler analogous problem. Then exploit your solution."

Problem 4: Two points on the surface of the unit sphere {(in 3-space)
are connected by an arc A which passes through the interior
of the sphere. Prove that if the length of A is less than 2,
then there is a hemisphere H which does not intersect A.

Problem 5: Let a, b, and ¢ be positive real numbers. Show that not all
three of the terms a(l-b), b{(l-c), and c(l-a) can exceed 1/4.

Problem 6: Find the volume of the unit sphere in 4-space.
Problem 7: Prove that if a +b + ¢ + d = ab+bectcd+da, then a=b=c=d.

These four problems, like problem 1, can be sclved by the "analogous
problem'" strategy. Yet, it is unlikely that a student untrained in using the
strategy would be able to apply it successfully to many of these. Part of che
reason is that the strategy needs to be used differently in the solution of
each problem.

In solving problem 1, we built up an inductive solution from the

two-variable case, using the result of the analogous problem as a stepping
stone in the solution of the original.
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In contrast, analogy is used in problem 4 to furnish the idea for an
argument. The problem is hard to visualize in 3-space but easy to see in the
plane: We want to construct a diameter of a unit circle which does not
intersect an arc of length 2 whose endpoints are on the circle. Observing
that the diameter parallel to the straight line between the endpoints has this
property enables us to return to 3-space and to construct the analsagous plane.

Problem 5 is curious. It looks as though the two-variable analogy should
be useful, but I haven't found an easy way to solve it. At first the
one-variable version looks irrelevant, but it's not. If you solve it, and
think to take the product of the three given terms, you can solve the given
problem. So again we exploit a result, but this time a different result in a -
different way.

Problem 6 exploits both the methods and results of the lower-dimensional
problems. We integrate cross-sections, using the same method; the measures of
the cross-sections are the results we exploit.

In problem 7 it would seem apparent that the two-variable problem is the
appropriate one to consider. However, "which two-variable problem" is not at
all clear to students. A large number of those I have watched tried to solve

Problem 7': Prove that a2

+ b% = ab implies that a = b, instead of
Problem 7": Prove that a2 + b

= ab + ba implies a = b.

The description "exploiting simpler analogous problems" is really a
convenient label for a collection of similar, but not identical, strategies.
To solve a problem using this strategy, one must (a) think to use the strategy
(this is non-trivial!), (b) be able to generate analogous problems which are
appropriate to look at, {c) select from among the analogies, the appropriate
one, (d) solve the analogous problem, and (e) be able to exploit either the
method or result of the analogous problem appropriately.

If we assume now that we can actually describe the strategies in enough
detail so that people can use them, we run right into another problem. That
is: a list of all the strategies in detail would be so long that the students
could never use it! Knowing how to use the strategy isn't enough: The
student must think to use it when it is appropriate.

Consider techniques of integration in elementary calculus. There are
fewer than a dozen important techniques, all of them algorithmic and
relatively easy to learn. Most students can learn integration by parts, or
substitution, or partial fractions, as individual techniques and use them
reasonably well, as long as they know which techniques they are supposed to
use. (Imagine a test on which the appropriate technique is suggested for each
problem. The students would probably do very well.) When they have to gelect__.-__.‘——)—
their own techniques, however, things often go—awry.  Fof eéxampile, 5"‘v‘q:

“Meifr" first problem on a test, caused numercus students trouble when they -
tried to solve it by partial fractlons or, even worse, by a trigonometric
substitution!
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In "Presenting a Strategy for Indefinite Integration' (The American
Mathematical Monthly, 1978) I discuss an experiment in which half the students
in a calculus class (not mine) were given a strategy for selecting techniques
of integration, based on a model of "expert" performance. The other students
were tald to study as usual -- using the miscellaneocus exercises in the text
to develop their own approaches to problem solving. Average study time for
members of the "strategy'" group was 7.1 hours, while for the others it was 8.8
hours; yet the 'strategy" group significantly outperformed the others on a
test of integration skills -- in spite of the fact that they were not given
training in integration, just in selecting the techniques of integration.

The "moral" to the experiment is that students who cannot choose the
"right" approach to a problem —-- even in an area where there are only a few
useful straightforward techniques -- do not perform nearly as well as they
"should." 1If we leap from techniques of integration to general mathematical
problem solving, the number of potentially useful techniques increases
substantially, as does the difficulty and subtlety in applying the techniques.
An efficient means for selecting approaches to problems, for avoiding “blind
alleys," and for allocating problem-sclving resources in general thus becomes
much more critical. Without it, the benefits of training in individual
heuristics wmay be lost.

In consequence of the above, an attempt to teach general mathematical
problem solving would need these two components: first, a detailed
description of individual strategies, and second, a global framework for
selecting these strategies and using them efficiently. One way of presenting
such a framework is with a "model"™ of expert problem solving. That model
takes a semester to unfold, so there is no sense in my attempting to summarize
it here. What I have done is simply to give the outline of the model (see
Figure 1), and a description of the most important heuristic strategies which
fall within each of the major blocks of that strategy (see Figure 2).

Of course, documenting improved problem-solving ability is rather
difficult. I am slowly amassing evidence, in a variety of different ways,
that instruction in problem solving actually can have an impact on students'
problem—-solving performance. The material on integration provided some
evidence of this. A "laboratory study" demonstrated that "problem-solving
experience" in and of itself is not emough: 1In the experiment, two groups of
students worked on the same problems for the same amount of time and saw the
same solutions, but one saw in addition heuristic explanations of the
solutions. The differences in their .performances were dramatic. (S5ee
"Explicit Heuristic Training as a Variable in Problem-Solving Performance.')
Third, there i3 a large amount of "before and after" data on the students in
the problem—solving course. These data indicate both an improved
problem~solving performance on the part of the students and an improved
ability to generate plausible approaches to problems, as opposed to a control
group. There is much data to be analyzed by a variety of different means --
means which were unavailable just a few years ago, and which come from a
variety of disparate sources. As one such example, let me discuss briefly the
notion of "hierarchical cluster analysis." Consider the following three
problems.
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Figure 1. SCHEMATIC OUTLINE OF THE PROBLEM-SOLVING STRATEGY

Given Problem

ANALYSIS
Understanding the Statement More Accessible
Simplifying The Problem Related Problem
Reformulating the Problem : or

New Information

Useful Forwmulation;
Access to Principles
and Mechanisms.

Minor
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DESIGN - EXPLORATION
Structuring the Argument Major Essentially Equivalent

ierarchical Decomposition:[Difficulties==3 Problems
global to specific Slightly Modified

' Problems
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Schematic Solution

IMPLEMENTATION

Step-by~-Step Execution
lLocal Verification

Tentative Solution
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-

Specific Tests _ - ——f—
IGeneral Tests

Verified Solution
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Figure 2. SOME IMPORTANT HEURISTICS IN PROBLEM SOLVING

For Analyzing and Understanding a Problem:

1. Draw a2 Diagram if at all possible
2. Examine Special Cases
(a) to exemplify the problenm,
(b) to explore the range of possibilities through
limiting cases,
(c) to find inductive patterms by setting integer
parameters equal to 1,2,3,... in sequence.
3. Try to simplify it, by using symmetry or "without loss
of generality.”

For the Design and Planning of a Solution:

1. Plan solutions hierarchically.

2. Be able to explain, at any point in a solution, what you
are doing and why; what you will do with the result of
this operation. T

fFor Exploring Solutions to Difficult Problems:

1. Consider a variety of equivalent problems

(a) replacing conditions by equivalent ones,

(b) recombining elements of the problem in different ways,

(c) introducing auxiliary elements,

(d) reformulating the problem by (1) a change of
perspective or notatlon, (i1i) arguing by contra-
diction or contrapositive, or (iii) assuming a
solution and determining properties it must have.

2. Consider slight modifications of the original problem:

(a) choose subgoals and try to attain them.

(b) relax a condition and try to re-impose it.

(c) decompose the problem and work on it case by case.

3. Consider broad modifications of the original problem:

(a) examine analogous problems with less complexity
(fewer variables). :

(b) explore the role of just one variable or condition,
the rest fixed.

(¢) exploit any problem with a similar form, 'givens,"
or conclusions; try to exploit both the result
and the method.

For Verifying a Sclution:

1. Use these specific tests: Does it use all the data,
conform to reasonable estimates, stand up to tests of
symmetry, dimension analysis, scaling?

2. Use these general tests: Can it be obtained differently,
substantiated by special cases, reduced to known results,
generate something you know?
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Problem 8: Given that lines intersect if and only if they are not
parallel, and that any two points in the plane determine a
unique line between them, prove that any two distinct
nonparallel lines must intersect in a unique point.

Problem 9: Given 22 points on the plane, no three of which lie on the
same straight line, how many straight lines can be drawn,
each of which passes through two of those points?

Problem 10: If a function has an inverse, prove that it has only one
inverse.

Let us take an extreme case. The student who understands virtually
nothing of these problems may think that problems 8 and 9 are related because
they both deal with lines in the plane. On the other hand, the mathematician
sees that both probliems 8 and 10 deal with the uniqueness, and are likely to
be proved by contradiction. Therefore he may perceive of those problems as
being similar.

Suppose 100 students were given these 3 problems, and asked to group
together those problems which they thought were related. (They might decide
that none of the problems was related or that two of them were, or that three
of them were.) One could then create a 3 by 3 matrix, where the i,j-th entry
represented the number of students who considered the i-th and j-th problems to
be related. A comparison of these matrices before and after instruction, for
both experimental and controlled groups, could indicate changes in the
students' perceptions of the way these problems were structured mathematically.

In fact, my cluster analysis used 32 problems, with a 32 x 32 matrix for
analysis. There were clear differences between experimental pre- and post-test
scores, and controlled pre- and post-test scores. Further comparison with
"expert" sorting of the problems is also planned. The full tally is yet to
come, but the preliminary results are encouraging.
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Issues in Mathematical
Problem-Solving Research*
by

Frank K. Lester, Jr.
Indiana University

During the seventies mathematics education researchers devoted more
atteantion to problem seolving than any other topic in the mathematics
curriculum and there is every indication that this condition will exist for
some time. While there is some evidence that problem-solving research is
beginning to be investigated in a gystematic way, it is difficult to
synthesize the myriad of studies due to such factors as lack of agreement on
what constitutes problem solving, how performance should be measured, what
tasks should be used, and what the key variasbles influencing behavior are.
Indeed, the nature of mathematical problem solving appears to a certain extent
to be so complex and subtle as to defy description and analysis. However,
there are some factors (variables) associated with problem solving that are
inextricably linked together. These factors can be classified into four
categories with each category involving many parts. It is immediately evident
that these categories are not disjoint; in fact they are so closely related
that it often is difficult to determine to which category a particular factor
belongs. The four categories are:

I. Subject Factors - what the individual brings to a problem.

II1. Task Factorg - factors associated with the nature of the

' problem.
IIT. Process Factors - the overt and covert behavior of the
individual during problem solving.

IV. Environment Factors - features of the task environment
which are external to the problem
and the problem solver; instruc-
tional factors comprise an important
class of factors.

Categories I and III are so closely related that some further
clarification is warranted. Variables within the Subject Factors category are
agsociated with individual traits and background (e.g., previous mathematical
background, age, sex, cognitive style, familiarity with certain problem
types). Variables in this category serve to characterize the subject.
Category III variables (Process Factors) relate directly to the behavior of
the individual during problem solving. The manner in which the problem solver
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Issue III. Characteristics of problem solvers greatly affect behavior
and consequently severly limit generalizability of results. The kinds of
subjects to use in problem-solving research is a topic of much discussion.

For example, while knowledge about the processes good problem solvers use is
clearly important, it is less clear that average ability problem solvers can
be taught to use these processes. Should subjects used in mathematical
problem-solving research be '"mathematically talented" or of "average'" ability?

Instruction-Related Issues.

There is every reason to believe a substantial portion of future
problem-solving research will focus on instruction. For this reason it is
appropriate to point out the key issues directly associated with instruction.

Issue TV. There is little agreement regarding how best to improve
problem-solving performance beyond the obvious fact that attempting to solve
problems is a necessary ingredient. Common points of view regarding
problem~solving instruction include:

a. Having students solve many problems - no direct
instruction;

b. Teaching unitary skills (tool skills);

¢. Teaching heuristic strategies;

d. Modelling good problem-sclving behavior and having
students imitate this behavior;

e. Some combilnation of the above.

Issue V. In addition to a lack of consensus regarding the best ways to
enhance problem solving, there is no accord about what should be the nature of
problem-solving improvement. Some researchers interested in problem-solving
instruction have focused on the improvement of students' abilities to use
particular strategies or skills, while others have considered improvement only
in terms of an increase in the number of correct solutions. Also, in many
cases no attention has been given to whether newly acquired facility in
solving a particular type of problem transfers to solving a different type of
problem. Indeed, the extent to which various types of transfer of training
should be expected is an open question.

Issue VI. The extent of instructiomal treatments in recent mathematical
problem-solving research varies from about one week to several months with
relatively short treatments being the most common. Treatments should be
extensive enough to allow not only for full explication of ideas and
procedures, but also to provide ample opportunity for students to practise the
procedures being taught.

‘Research Methadology Tssue.

There is a single issue related to research methodology. Typically,
methodological issues become less important when a sound theoretical basis
guides the conduct of inquiry. However, the present lack of adequate
problem-solving theories makes issue VII a current, although possibly
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short-term, concern. This issue 1s neither the unique domain of
problem-solving researchers, nor of the same level of importance as the First
six issues but it is important enough to warrant serious attention.

Issue VII. There are no generally accepted methods or instruments for
measuring performance or observing behavior during problem solving which are
clearly reliable and valid. Thus, the kind of instrumentation which is
appropriate for a particular purpose remains an issue. The most popular
instruments are of two types: paper-and-pencil tests and protocel analysis
based on "thinking aloud" or retrospection. Each of these types has serious
weaknesses. Paper-and-pencil tests are notoriously unreliable measures of
problem-solving processes and often use only routine problems. Protocol
analysis suffers equally serious limitations. Forcing the problem solver to
think aloud during problem solving may have a deleterious effect on
performance and the problem solver typically is unable to articulate all, or
even the most important, thought processes. Retrospective analysis is often
criticized for the unreliability of accounts of behavior,- -including all the
cognitive processes used, which are reconstructed by a problem solver after an
attempt to solve a problem. Should more or less emphasis be given to the
development of paper-and-pencil tests? Should more or less emphasis be placed
on the development of procedures for collecting and analyzing problem-solving
protocols?

The individual researcher must make personal decisions regarding some, or
all, of these issues before undertaking problem—solving research. At the same
time the problem-solving research community as a whole should give overt
attention teo discussion of the controversies involved with these issues. It
is only through the open exchange of ideas and points of view that progress
can be made toward building a large and stable body of knowledge about the
nature of mathematical problem solving.

* The ideas expressed in this paper are abstracted from "Problem Solving
Research,” in (R.J. Shumway, Ed.) Research in Mathematics Education, Reston,
VA: NCTM, 1980.
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Ye Shall Be Known by Your Generations

by

Stephen |. Brown
State University of New York at Buffalo

I. Introductieon

A quarter of a century ago with the advent of the "new math,"” we were
persuaded that understanding the structure of mathematics through such
pedagogical strategies as discovery learning would attack frontally the most
pervasive issues regarding the meaning of mathematics and the roles of the
teacher and student as well. That myth has passed for the most part, but we
are now bombarded by a new set of slogans as we are cajoled to teach problem
solving as our new salvation.

Why have we not been led through the pearly gates in the past, and why is
the prognosis not much better now? There are many reasons, of course, not the
least of which is that curriculum specialists frequently do not appreciate a
valuable intuition that is built into the bones of the best of practitioners:
that schools involve a complicated interaction among people whose ‘interests
are frequently and fundamentally in conflict, and "diddling" a little bit with
a curriculum or with a teaching strategy may bypass some of the most basic
components that must be confronted if change 1s to occur.

Sarason (1971), a clinical psychologist, carefully observed efforts to
implement a new math program in a school system several years ago. He
articulated a number of characteristics of the school setting that may have

accounted for a great deal of the failure of the new curriculum. Among these
were:

1. The relation between teacher and pupil is characteristically
one in which the pupil asks very few questions.

2. The relation between teacher and pupil is characteristically
_one _in which teachers_ ask quaestions—and-the pupil-givesan ———  — —— — — 7
answer. :

3. It is extremely difficult for a child in school to state
that he does not know something without such a statement
being viewed by him and others as stupidity.

4. It is extremely difficult for a teacher to state to the
principal, other teachers, or supervisors that she does not
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understand something or that in certain respects her
teaching is not petting over to the pupils.

5. The contact between teacher and supervisor (e.g., supervisor
of math, or of social studies) is infrequent, rarely involves
any sustained and direct observation of the teacher, and is
usually unsatisfactory.

6. One of the most frequent complaints of teachers is that the
school culture forces them to adhere to a curriculum from
which they do not feel free to deviate, and, as a result,
they do not feel they can, as one teacher said, "use (their)
own heads.™

7. One of the most frequent complaints of supervisors or princi-
pals is that too many teachers are not creative or innovative
but adhere slavishly to the curriculum despite pleas
emphasizing freedom. (p. 35)

His main point is that no amount of development and delivery of a new
curriculum per se could succeed if efforts were not made to take inte account
some of the above characteristics. If these characteristics threaten the
success of any new curriculum project, how much more must they tend to abort
our efforts to implement a problem-solving curriculum -— a curriculum that
supposedly not only honors the intelligence of the student, but that suggests
a reconception of the authority of the teacher!

But our disinclination to appreciate the complexity of the social context
of school is only part of what has doomed earlier curriculum movements to
something less than smashing success. Even if it were legitimate to isolate
the issues of curriculum from those of the social setting, we have tended to
foist a unidimensional view of curriculum issues on teachers who once more
frequently intuit correctly that things are more complicated than theorists
would have them believe.

Qur intention in this paper is to attempt to point out how it is that the
slogans of the 1950's and 1960's cannot exist in isolation from those of the
1970's and 1980's, and that any serious efforts at curriculum and instruction
reform must search for important linkages. Thus, while the focus of this paper
is more modest than the concerns of Sarason, it would be a mistake to '
implement a program that neglects to incorporate the two areas of concern.

Before beginning our analysis, it is worth admitting a bias that will
soon become very obvious. That is, I believe it is a serious error to
conceptualize mathematics as anything other than a human enterprise which,
among other things, helps to clarify who we are and what we value. That bias
will "ooze out" rather than be dealt with frontally at least in the first few
sections. It will assume a central position, however, by the end of the
paper.

We turn first to a consideration of a concept that was at the forefront
of the modern math movement in the 50's and 60's -- that of understanding.
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IT. On Understanding

How poorly understood both in terms of pedagogical practice and
psychological research is the notion of understanding! Let us begin with some
comments made by Henri Poincare (1961) in an essay of his in which his focus
was on mathematical creativity as a way of seeing some of the difficulty with
regard to mathematics: <

How does it happen there are people who do not understand
mathematics? If mathematics involves only the rules of logic such
as are accepted by all normal minds; if its evidence is based on
principles common to all men, and that none ¢ould deny without being
mad, how does it come about that so many persons are
here refractory?

That not everyone can invent is no wise mystery. That not
everyone can retain a demonstration once learned may also pass. But
that not everyome can understand mathematical reasoning when
explained appears very surprising when we think of it. And yet
those who can follow this reasoning only with difficulty are in the
ma jority: that {s undenilable, and will surely not be gainsaid by
the experience of secondary school teachers. {(p. 33).

Now it 1is one thing to attempt to answer reasonable sounding questions
but it is frequently far harder to find unwarranted assumptions that relegate
such questions to the class of pseudo-questions. In some cases the "excess
baggage'" is obvious (e.g., "When did you stop beating your husband?"). 1In
other cases it takes the wisdom of centuries to expose pseudo-questions.
Mathematics itself is a beautiful example of a discipline in which such
"unpacking" required enormous labor pains over hundreds of years. Almost
since the creation of Euclidean geometry, questions were asked about
derivability of the parallel postulate from other postulates. It seemed that
the fifth postulate (through a given cutside point one line can be drawn
parallel to a given line) was much less fundamental than the others (like "rwo
points determine a line"). For a very long periocd of time, people tried in
vain to prove the fifth postulare from the others. It was, however, not until
people began to have the courage to rephrase their questions -- exposing
hidden assumptions =-- that progress was made. Notice the subtle difference
between the following two questions?

"How can you prove the parallel postulate from the

rest of Euclidean geometry?" versus

"What happens if we assume that the parallel postulate .
cannot be proven from the rest of Euclidean geometry?"

. —_ - — I1t-was—the—courage to ask the Guestion in the second way that gave birth
not only to non-Euclidean geometry but to a totally new conception of the
nature of mathematics.

Enough of a digression! What has Poincare done in inquiring why
people have difficulty understanding mathematics? I believe that he has
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brought along excess baggage that fits somewhere between the obviousness of
the husband-beating question and the extreme subtlety of the original parallel
postulate question.

In contrasting mere understanding and creating, he assumes that they are
different states of mind or different kinds of activities. Understanding
mathematics is one thing -- creating is another! What ia it that leads us to
believe that '"mere understanding" is so simple a construct and so divorced
from an act of creation?

We have been misdirected partly by a technological input/outgo view of
the world to conclude that '"coming to understand" is a relatively
straightforward matter. The viewpoint is connected to a commonly held myth
regarding good teaching. Good teachers are supposed primarily to be able to
explain things well and to be able to "get us" to understand things that we
could not do well on our own! I would like to explore a more dynamic model of
understanding mathematics. I will do so by reflecting on personal experiences
in teaching or learning and by examining curriculum as well.

Part/Whole Thinking and Mathematics

We begin with one of the most serious problems in understanding =-- that
of the attempt to relate the part tec & whole or to a context in coming to
understand a concept.

Consider the following two problems:

{1} In the set of natural numbers N= 1, 2, 3, 4, 5, ... , we
define a prime number as a number with exactly two different
divisors. So, 5 is prime because 1 and 5 are its only divisors.
4 is not prime because it has 3 divisors: 1, 2, 4.

Now instead of focusing on the set of natural numbers, look
at E=~= 2, 4, 6, 8, 10, 12 . . . . Using the same definition
of prime as in N, list the primes in E.

(2) Amy Lowell {(the poetess of human liberation of her day) goes
out to buy herself some cigars. She has a bunch of change
in her pants pocket. Reaching inside, she feels around and
finds that:

-- she has nickels, dimes and quarters

~— there are 25 coins all together

-- there are three more nickels than dimes
-- the total amount of money is $7.15.

How many coins of each kind does she have?
We invite you to think about these two problems before reading on,

without considering your level of mathematical sophistication as a particular
hindrance or a help in working them out.
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Recently, 1 discussed problem (1) with Zvi, a mathematics teacher (Brown,
1978). RBelow is a rough replay of our dialogue:

Zvi: The only prime in E is 2.
Me: Why?
Zvi: Because 2 is the only even prime.
Me: Why isn't 6 prime in E?
Zvi: 1t can't be.

Me: Why?

Zvi: Because 6 is divisible mot only by 1l and 6 but by 2 and 3
as well.

Me: 1Is it?

Zvi: Yeah.

Me: How do you know?

Zvi: Just do it.

Me: Can we forget about E for a minute and look back only at N?

Zvi; Sure.

Me: I think that 5 is not prime in N.

Zvi: Why?

Me: ‘'Cause 5 is divisible by 2.

Zvi; No way!

Me: Why not?

Zvi: ‘'Cause you get 2 1/2 and you can't get "1/2's" when you
divide.

Me: Why can't you get halves?

Zvi: You can't because when you divide the answer has to be "even"
-- no fractions.

Me: What's wrong with fractions?

Zvi: They're not allowed when you try to divide in the natural
numbers.

Me: Why not?

Zvi: They're just not. When you divide in the natural numbers,
things bhave to go "evenly."

Me: Can we look again at E?

Zvi: Sure.

Me: Does 2 divide 6 in E7

Zvi: Yes, and so 6 is not a prime as I said before.

Me: Can you think of a way of conceiving of "divides" that would
make the statement "2 divides 6" false in E?

Zvi: No! 2 does divide 6.

Me: But does it do it in E?

Zvi: Yes.

Me: How do you know that 2 divides 67

Zvi: Because 3 x 2 = 6.

Me: But 3 doesn't belong to E.

)

T T T Zvit—So% -
Me: Why wouldn't you let me say that 2 divides 5 im N?— ——w-— .
Zvi: 'Cause then you'd get a fraction for an answer. .

Me: What's wrong with that again?

Zvi: T told you already. They're not allowed when you try to
divide in the natural numbers.

Me: Can you give me a reason for why they're not allowed?
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Zvi: They're just not. If you divide in N, it has to go evenly.

Me: Can you look at the situation in E again and find a way of
excluding 3 as an answer when you try to see if 2 divides 67

Zvi: No.

Me: Well, suppose we think about 2 1/2 as not being permissible
as an "answer" when you try to divide 5 by 2 not because
things don't go "evenly" but because 2 1/2 ign't a member of
N!

Zvi: That's not really why. But so?

Me: Suppose you use that reasoning in E. Then 2 does not divide
6 because the only candidate 3, that could make it true
does not belong to E! Therefore 6 is prime in E.

Zvi: You can't do that.

Me: Why not?

Zvi: Prime makes sense only in N, and it's only because 2 does
not divide 5 "evenly" that 5 remains a prime in N.

Me: What does "evenly" mean again?

Zvi: No remainders when you try to divide!

1 apologize for the long dialogue, but I hope the interchange is
beginning to raise some questions about the nature of understanding. Before
discussing things, let us turn to the second problem.

I have given a modified version of the Amy Lowell problem to many people
over the past few years, and I have met with astounding results. Those people
who have studied a great deal of mathematics almost always begin with
something like:

Let d = number of dimes
d + 3 = number of nickels
25 - (d + a4 + 3) = number of quarters.

They then set up an equation taking into consideration the fact that the
total amount of money is $7.15. 1In attempting to solve the equation, they
frequently end up with a negative, fractional value for d. What do they do?
Most sophisticated mathematicians then either look over the calculation to see
where they may have made an error or they take out a new sheet of paper and do
the same thing over again -- once more ending up with a fractional negative
answer for d. T have seen this type of behavior continue for a half hour
resulting in an even greater sense of frustration than when Pavlov presented
an ellipse to a dog after training it to expect food if the event is preceded
by a straight line and punishment if by a circle!

Let us explore the Amy Lowell example a little bit Eirst. After some
initial frustration, perhaps, it is possible to explore this problem
intelligently and no amount of repeated equation solving will in itself reveal
an intelligent approach to the problem. One intelligent approach would be to
attempt to see the larger picture instead of immediately committing oneself to
setting up an equation. In trying to relate the pieces to each other, it is
possible to solve the problem by observing that if you had 25 coins and even
if all of them were quarters, then it would be impossible to have $7.15.

There is no way to relate 25 nickels, dimes and quarters s0 as to yield $7.15!
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Well, what are we getting at here other than demonstrating an insightful
vs. a "plodding” approach to a problem? The difference between the two
approaches goes much deeper than that. In one case a primarily linear
approach is taken to solve a problem -- an approach in which information is
added bit by bit without regard for the large picture, and more importantly
without any serious attempt to have intelligence prevail. In the other
approach, an effort is made to view the pieces in relationship to the whole
and to other pieces and to see how an intelligent reformulation of the problem
reduces it to one of mental arithmetic rather than algebra.

Though we see this distinction {(linear vs. holistic approaches) clearly
in the more creative act of trying to solve the Amy Lowell problem, it is also
present in more subtle form in Zvi's inability to "merely understand” what I
was driving at in the dialogue. His problem was apparently not only that he
would not allow us to extend the use of the word “prime" te an unfamiliar
context, but that the concept of prime number could not be extended because he
was unable to view failure of divisibility in N in any terms other than
whether or not the "answer comes out even." He was incapable of seeing
"coming out even' as only a partial view of what divisibility in N might mean
and more importantly he was not capable of seeing that the concept of prime
was not a concept in isolation but rather one that made sense in a context.
That is, he had conceived of "prime" in such a way that it lacked "hinges" to
the broad context of domain.

All of this from a mathematics teacher who could follow and teach any
number of procedures involving primes in N -- getting prime factors of a
number, adding fractions, reducing to lowest terms and so forth! He could do
everything expected of him -- except perhaps understand the concept of prime.

The problem as we have identified it so far is one that Wertheimer (1945)
addressed over a quarter of a century ago. Concerned with gestalt psycholeogy
and its ability to point out what distinguishes productive from non-productive
thinking, he chose many mathematical examples to illustrate the point. As a
matter of fact, he made the famous mathematician Gauss an almost popular hero
by exploring in gestalt terms an alleged story of him as a youngster faced
with the task of finding the sum of the natural numbers from 1 to 100.

It is by looking at 1 + 2 + 3 + 4, + ... + 97, + 98 + 99 + 100 in gestalt
terms that we can begin to see how a shortcut might have emerged historically.
Anyone who thinks of adding up the pieces in terms of a geometric staircase
model (below) might readily see how the pieces could be viewed as part of a
whole.

—

—
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It is possible to view the above structure as only half a configuration
embedded in a rectangle as in the figure below:
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Compare this illuminating approach with the following found in wany texts:

Start with: 1 + 2 + 3 + 4 + 5 + .. + 97 + 98 + 100. Now count
backwards and arrange so that we have the following:

+ 2 Q941 +
+ |99 ?J +

If we now add vertical pairs, we end up with:

100
1

98
3

+
+

3
98

+
+

+
+

+
+

1
100

101 + 101 + 101 + ... + 101 + 101 + 101

Instead of finding the desired sum, we thus have twice the desired sum.
How many times do we have 10l as a term in the sum? It is obviously 100
times. But then 100 - 101 gives us the value of twice the sum of the numbers
from 1 to 100. Since we want the sum only once, the answer is 1/2 - ICO - 101

5050.

It is not all clear how one might have thought up this scheme for finding
the answer by examining twice the sum and writing one of them "backwards"
unless one has seen a gecmetric type scheme as above.

Explaining how gestalt thinking works, Wertheimer comments,

The aim of discovering the inner relation between structure and task
leads to regrouping, to structural reunderstanding. The steps and
operations do not in the least appear toc be a fortuitous, arbitrary
sequence; rather they come into existence as parts of the whole
process in one line of thinking. They are performed in view of the
whole situation, of the functional need for them, not by blind
accident nor as thoughtless repetition of an old rule—of-thumb

connection.
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A Second Look at Part/Whole Thinking

One reading of cognitive gestalt psychology is that its focus on the
relationship of the part to the whole is essentially an inner state of mind.
This is especially so if one reviews the experiments in perception and pays
attention to references such as "flashes of insight"™ and the like in the
literature. This is certainly suggested when Wertheimer claims:

Often it 1s not even necessary to assign a task for sensible
response to appear: it grows out of the inner dynamics of the
situation. (p. 108)

And he illustrates his point with figures such as:

O
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Apparently, it is a sign of gestalt thinking to place the '"lonely" square
from the top of the left figure te the inside of the right one.

Though the gestalt metaphor is valuable, we can find much of value in
encouraging people to relate parts and wholes in ways that go beyond the
purely cognitive "inner state" comstruct.

That is, a concerted effort on the part of educators to explore with
youngsters the many different ways in which parts and wholes do or should
relate to each other would seem to have enormous payoff. So much of our
educaticnal experience places us in the position of having or being parts of a
whole, and yet we are given almost no encouragement to reflect upon that
experience. In the previous subsection we focused on part/whole
relactionships from the perspective of specific problems, and we pointed out
shortcomings that result from an inability to attempt to see how parts and
wholes relate to each other. But this inability exists not only with regard
to a problem and its components. It is also an issue with regard to a course
in the context of one's mathematical experience and with regard to one's
mathematical experience In relationship to other experiences.

Schools are notorious for encouraging a "piece-meal" approach to
virtually everything. Youngsters are given very little opportunity to reflect
upon how the pieces fit together. Frequently, there is no rationale, and if
there is one, it may be frightening -- dealing more with conformity and
authority than with the fostering of intelligence. That is, as we have come
to understand dimensions of the "hidden curriculum,'" we see that much of what

passes for education is not necessarily in the best interests of the children,

nor of their teachers. Learning to wait and ta be obedient are hardly
designed to serve the intellectual interests of children, though they serve an
important rite of passage in a technological society that has internalized
these values. '
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The probliem is poignantly expressed by Matthew Lipman, Ann Sharp, and
Frederick Oscanyan (1977) in their program of teaching philosophy for
children.

One of the major problems in the practice of education today is
the lack of unification of the child's educational experience. What
the child encounters is a series of disconnected, specialized
presentations. If it is language arts that follows mathematiecs in
the morning program, the child can see no connection between them,
nor can he or she see a connection between language arts and the
social studies that follow, or a comnection between social studies
and physical sciences.

This splintering of the school day reflects the general
fragmentation of experience, whether in school or out, which
characterizes modern life...The result is that each discipline tends
to become self-contained, and loses track of its connectedness with
the totality of human knowledge...{p.6)

How can we as educators help students at all levels make better sense out
of their fragmented lives and ours?

Consider for example the issue of relating parts to a whole not with
regard to a specific mathematics problem, but with regard to an entire course.
The basic assumption that students are not wise enough to see a whole picture
until they have experienced completely all the pieces and thus that pieces are
perceived temporally prior to wholes is at best a mischievous assumption and
one that is responsible for a great deal of student malaise, animosity, and
rejection.

One of my most educationally worthwhile teaching experiences occurred when
I had the courage to begin a calculus course not by defining derivatives and
definite integrals as I had done for a number of years, but by giving each
student in the class a shape like:

I spent three weeks having them try (on their own and in collaboration
with others} to find out an area for that region. A great deal of frustration
ensued. Some very brilliant investigations took place. Beyond a number of
individual differences, however, what emerged was an almost "instantanecus" (3
weeks compared to an academic year) appreciation for what calculus was getting
at.

Halmos (1975), a first generation student of R. L. Moore, captures the
essential elements of this experience in the following remarks:
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For almost every course one can find a small set of
questions...questions that can be stated with the minimum of
technical language, that are sufficiently striking to capture
interest, that do not have trivial answers, and that manage to
embody in their answers, all the important ideas of the subject.

The existence of such questions is what one means when one says that
mathematics is really all about solving problems, and my emphasis on
problem solving (as opposed to lecture attending and book reading)
is motivated by them. (p. 467}

Having begun to explore the part/whole phenomenon as an essential and
poorly appreciated ingredient in understanding -- even in the mild sense of
following an argument =-- let us now turn to another dimension that challenges
a passive interpretation of what is involved in coming to understand: problem
generation. '

Problem Generation

We begin once more with a small anecdote. First consider the problem
below:

The ten's digit of a two digit number is one half the unit's digit.
Four times the sum of the digits equals the number. Find the
number.

This problem was shown to me by a beginning mathematics teacher who was
distressed upon discovering it in a text for one aof her high school classes.
She worked it out and based upon the solution decided that it was a mistake
and that she would not assign it to her students. Why? If you tried to work
this out algebraically, you most likely arrived at something like:

Let t = ten's digit

u = unit's digit

Then t = 1/2u
4(t + u) = 10t + u

you probably then ended up with something like:
bu = bu

Therefore, any u should work and the only restriction on t would be that t =
1/2u. Her point is that unlike all digit problems she had done before, this

one seemed highly irregular in that it implied many solutions. For example,
12, 24, 36, 48 at least would work. Thus:

4(3 + 6) = 36!
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Her method of handling this irregularity was to dismiss it (though she
did privately make inquiries).

How might one try to make sense out of this anomaly? In addition to
asking “"why?" directly, one reasonable way of proceeding would be toc "“probe”
the phenomenon by asking any number of questions such as:

(1) Are there any other problems like this digit problem for which
a similar phenomenon results? For example, when can I get the
same results if the ten's digit is three times the unit's digit?
(2) To what extent is the result a consequence of the base
selected? Would I get the same result in a base other than ten?
(3) What kind of problem for a three digit number would yield
similar anomalies?

Lest we lose sight of the larger picture here, let us consider what is
behind "probes'" of the kind we are suggesting. At bottom is an inclination to
generate problems. Though problem solving has become an explicit area of
concern of mathematics educators at all levels, we seem to have lost sight of
the fact that problem solving is rooted in a4 much more fundamental activity:
problem generation.

Students who understand that it is legitimate to expect them to solve
problems do not believe that it is similarly reasonable to expect them to pose
problems. The irony of it all is that no one ever is capable of solving a
problem (not just doing an exercise) without formulating some new problem
along the way. The fact that students are disinclined to see mathematics (or
perhaps any school activity) as a problem-posing enterprise first occurred to
Marion Walter and me a number of years ago at which time we were team teaching
a course to Harvard Master of Arts in Teaching students. Having a definite
"lesson plan" in mind, we began by asking the students to give us some answers
to:

We got dutiful. responses like 3, 4, 5; 5, 12, 13, and even a few "wiseacre"
ones like: 1, 1, §2; -1, 2, 45. : )

It occurred to us afterwards that the students were answering a

non-question. No one (including us at the time) had realized that: x2 + y2 =
z% is not a question, but am open form about which many questions could be

asked or problems posed. For example, find x, y, z so that the Pythagorean
equality misses by 1; or find three bona fide fractions that satisfy the
equality; or give a geometric interpretation of the equality; and so

forth.

I1f people are disinclined to generate problems even when the context is a
"natural" one -- that is inspired by anomaly, surprise, doubt —— then how much
more are they reluctant to do so when they are just being asked to "follow" or
te "understand" someone else's presentation? Let us return again to the
problem of Zvi and primes.
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Zvi had learned very well what a prime number is according to the
definition he was given. However, because he viewed "understanding” as a
passive affair, it nmever occurred to him to go beyond the conception which he
was "given": A number is prime if the only things that "go evenly" into the
number are 1 and the number itself.

What else might he have done —- even if he were asked to accept that
definition? If he had been inclined to see the world in less authoritarian
and more "elastiec terms," he might have asked, for example:

l. What's so special about numbers that have only two divisors?
Can numbers have 3 divisars? (4 and 9 being two examples).

2. Can numbers have four divisors?

3. How many numbers are there with 5 divisors?

4. I wonder if there is some way to visualize prime numbers.

5. What is the biggest prime number? '

6. Why are we focusing on divisibility? Is there something
like primes with subtractions?

7. Are there any fractions that are prime?

These questions could be expanded at will, and we perhaps should be
cautious in criticizing Zvi for never generating such a list. After all, we
all have a finite time to invest in any activity and this was one that Zvi
chose to "accept." The problem is, however, that believing that "mere
understanding" is what Poincare depicted it to be -—- a passive activity or
achievement in which one keeps his '"nose clean" -- Zvi had acquired very
little understanding of any aspect of mathematics.

If you accept that in some sense one must create knowledge (as implied by
the criticism that Zvi never asked.any of these questions) in order to
understand anything, then you might reasonably ask why a teacher (as opposed
to the students) could not generate these questions to initiate understanding.
The problem at least is that each of us comes to any experlence with a highly
idiosyncratic view of the world. The kinds of questions that make sense to me
in terms of solidifying understanding are very different from those that make
sense to you. Some of the questions I have asked above imply a need for
visualization which others do not; some are asking for a very large context
and some for a smaller one. Some are open to many alternative conceptions and
others to a limited number. :

It is not the disinclination to view any one phenomenon as "elastic' and

"probe-able" that limits one's ability to understand so much as world view
that conceives of understanding in such an inert way.

Summarz

Using—anecdeotes—and—reflecting—upon-personal -educational—experiences;—T
have attempted to suggest that a behavioristically rooted model of
"understanding" has grave limitations. Referring both to the issue of
part/whole and of problem generation, I have tried to illustrate how it is
that understanding is a personal and aggressive construct in the sense that ne
one is capable of doing your understanding for you. There is perhaps a sense
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of human liberation captured by a stance which makes the "it" in the most
"cool"™ of all subjects less mechanistic and more of a private phenomenon. In
what ways, however, is this "mushier" conception of the "it" capable of
shedding light on the self as part of an educational experience? We turn now
to that question.

III. Towards An Integrated Notion of Self

In 1913, Dewey (1975) produced an extremely important work that has been a
well-kept secret in educational circles, Interest and Effort in Education.
He focused on a question of fundamental {wmportance tec practitioners and one
which dividends the advocates of "free," "open,” and "traditional” education.
He asked whether teachers ought to take major responsibility for "interesting"
children in the perhaps dull substance of their education, or should they
expect youngsters to exert "effort" on their own in order to master material
even (or especially) if it is "uninteresting” to them? All of us have, perhaps,
heard or made arguments that support these two conflicting points of view.
Opiniouns about the benefit or harm of "sugar coating" content frequently falls
back upon disagreements with regard to these two poles.

Dewey begins his book by making a plausible case for each point of view,
and then proceeds to point out what he conceives of as a basic fallacy in both
of them.

The common assumption is that of the externality of the cbject, idea
or end to be mastered to the self. Because the object or end is
assumed to be outside self it has to be made interesting; to be
surrounded with artificial stimuli and with fictitious inducements
to attention. (p. 7)

Having linked the need to make things interesting to the erroneous notion
of separation of self and object, he finds the same fallacy in "effort" as a
fundamental obligaticn of the student.

Or, because the object lies outside the sphere of self, the sheer

power of "will," the putting forth of effort without interest has to
be appealed to. (p. 7)

He sees a resolution of the dilemma te be in the direction of unification
of object and self.

The genuine principle of interest is the principle of the recognized
identity of the fact to be learned or the action proposed with the
growing self; that it lies in the direction of -the agent's own
growth, and is, therefore, imperiously demanded, if the agent is to
be himself. Let this condition of identification once be secured,
and we have neither to appeal to sheer strength of will, not to
occupy ourselves with making things interesting. (p. 7)

In further blurring the sharp distinction between "self" aund "object,"

Dewey reveals himself as the unacknowledged originator of the new popular
concept of "hidden curriculum" in education. He comments:
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The question of educative training has not been touched until we
know what the child has been internally occupied with, what the
predominating direction of his attention, his feelings, his
disposition has been while he has been engaged upon this task. If
the task appeals to him merely as a task, it is as certain
psychologically as is the law of action and reactign physically,
that the child is s'mgly engaged in_acquiring the habit of divided
attention; that he is getting the ability to direct eye and ear,
lips and mouth to what is present before him so g__;g_;mngﬁﬁ_zhgﬂe
things upon his memory, while at the same time he is settipg his
thoughts free to work upon matters of real importance to him.
[emphasis my own] (p. 8,9)

If there is any portion of the curriculum that has become the hallmark of
separation of object and self, it is mathematics. What kind of thinking is
needed in order to provide a different conception of their relationship? We
shall in the following subsections provide possible directions for integrating
the two, without attending to any detailed scheme of implementation.

Part/Whole Thinking A Third Time

We ought, perhaps, to be more cautious in making such harsh judgments of
Zvi and "blind” efforts on the Amy Lowell problem. How might we expand some
of our criticism in the subsection entitled "A Second Look at Part/Whole
Thinking" so as to focus not primarily upon "making ocbjective sense," but upon
greater self understanding?

Consider those people who approach the Amy Lowell problem in an
algorithmic way. DNow, it is possible for them to justify their approach.
After all, the problem did resemble ones they had done before and there is
certainly considerable efficiency involved in placing similar problems in an
already well ‘worked—-through meld. Such an argument would then select the
existing algebraic structure as a "whole" within which this small problem is a
part. Those who decide to view the problem in such a way as to relate the
parts to the whole within the problem itself (rather than to the whole of an
algebraic structure) could justify their procedure on other grounds. They
might argue, for example, that though efficiency may be a virture -- all other
things being equal -~ this case appeared to be different encugh from others
they explored to warrant a reconsideration.

Well, why did they consider it different? Why were the algorithmic
thinkers willing to rum the risk of missing the yniqueness of the Amy Lowell
problem. for the sake of efficiency? To what extent were they out to see each
experience in mathematics as part of a more general phenomenon, and thus
easily incorporated into existing structures, and to what extent were they

desirous of viewlng new phenomena in a unique way? To say that something is
to be viewed uniquely does not imply that it is not to be seen as a part of
something larger -- but only that the something larger need not necessarily be
an already well-established structure.
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Now a great deal of deliberate mathematics education does err in the
direction of diminishing novelty. In fact the search for order, for
isomorphic structures and substructures, for harmony where apparent disharmony
exists, is frequently taken as the hallmark of mathematics. Whether or not
this ought to be the case is an interesting and important question, but it is
perhaps desirable for us to transform this philosophy of mathematics question
into an educational one.

An educational transformation would have us provide many opportunities
for students to approach problems and to view solutions either as unique
experiences or as something fitting into existing structures. To what extent
and under what circumstances do they feel comfortable with the uniqueness of a
particular mathematical experience? Why? How does that reflect upon the
desirability of finding uniqueness in non-mathematical circumstances as well?

It is quite conceivable that by understanding their stance towards the
value of uniqueness or the unexpected in & mathematical context, students of
mathematics may begin to understand how they value uniqueness and novelty in
other areas as well.

An effort to relate in a personal way the role of the unique and the
unexpected in attempting to assimilate and accommodate new worldly input may
move us in the direction of self-understanding.

Problem Generation Revisgited

Earlier we suggested how understanding mathematics per se requires a form
of problem generation. Here, we turn to relationships between problem
generation and self-understanding.

There is an important sense in which we are known to others as well as to
ourselves by the kinds of questions we ask and the problems we generate. Such
activity is frequently more courageous and involves considerably more risk
than appears on the surface. The asking of questions and the generation of
problems when done in a spirit of inquiry not only reveals an initial state of
ignorance and a desire to know, but also has embedded within a set of
assumptions. Such activity tells the world something about the 3pec1f1cs of
what we believe and in addition has the ability to inform others of the
intensity of these beliefs.

Are we willing to propose "foolish sounding" questions and under what
circumstances? For what purposes? Earlier we discussed how far several
hundred years investigating the parallel postulate revealed basic assumptions
which were in fact incorrect (i.e., that the parallel postulate can be proven
from the rest of Euclidean geometry). What is less cobvious, however, is the
enormous courage required to even ask the question in what has become a
twentieth century spirit (showing logical independence of propositions).

In 1822, Johann Bolyai wrote a letter to his father Wolfgang in which he
disclosed his new and daring form of the parallel postulate question.
Johann did so with intellectual curiosity, but also with great fear that he
would be perceived as risking his sanity by even asking the question. How
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could it mske sense to even conceive of a world in which there were no lines
parallel to a given line through a given outside point? How indeed! It was
only after the dust was cleared from an intellectual revolution from
Copernicus through Darwin through Freud through Einstein that we could say
that sanity had prevailed.

How much do we and our students risk when we ask questions that have
embedded the potential for even minor revolutions? Especially if our question
verges on foundational issues, we run a thin line between meaninglessness and
revolutionary finds.

Consider the following incident that occurred in a number theory course
of mine. We were trying to show that if a perfect square is even, then the
square root of that number is also even. (For example, 16 and 36 are even,
and so are 4 and 6.) An indirect proof led us after several stages to the
following assertion:

2n + 1 = 2m.

That is, an odd number would have to equal an even number. Just as we were
about to “"cap” the proof by a reducto ad absurdum claim, someone shyly asked:

"Why can't an odd number equal an even cne?"

Why indeed! Using any number of experiential arguments in the set of natural
numbers, we can come to believe that it is impossible for an odd number to
equal an even cne.

Despite all that, we tried to push the logic further. If 2n + 1 = 2m,
then simplifying we'd get 1 = 2(m - n) = 2 - x.

S0 now, we are led to conclude that twice an integer must equal 1. All
our experience rebels against the conclusion, but where do we go from here? A
natural inclination would be to try to prove that 1 = 2x has no salution in
the set of natural numbers or integers. We had just begun the course and no
one had adequate machinery to pursue that issue at the time, so we tried
another tack. Instead of trying to prove the equality false as we know it to
be in the set of natural numbers, we began to explore where it might be true.
The equation 2: x = 1 obviously has a solution in the set of fractions, but
that system appears to be different in so many ways from the natural numbers
that the find was unrevealing.

After some highly creative exploration, we found a system that "felt™
closer to the natural numbers but within which 2+ x = 1 has a solution: Clock
arithmetic.

oW
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Starting with zero and moving clockwise through 1 and 2, and then
circling back to the zerc for 3 and 1 for 4, and so forth, we can "wrap" all
the integers around the circle forming 3 separate classes. Choosing to define
addition and multiplication in a "matural" way, we find that there is a number
x so that 2+ x = 1; the equivalence class generated by two works.

But what does that say about odds and evens in cleck arithmetic? And how
does clock arithmetic compare with the natural numbers? What properties does
one have that the other lacks which enables us to f£ind numbers that are both
odd and even in one system but not in the other?

What have we done here? By shifting the context slightly (from natural
numbers to clock arithmetic) a foolish question emerges as the starting point
for some deep exploration -- including the opportunity to re-explore the
question in the original context with greater insight! On a minor scale, we
too have performed a "Bolyai." We took a very foolish-sounding question
seriously and found a home within which we emerged a hero!

As with Bolyai, pushing the question challenged every bit of experience,
and finding a non-trivial home for the question was a testimony to our ability
momentarily, at least, to suspend logic in favor of a creative leap (keeping in
mind the level of experlence of the class at the time).

That the exploration was mathematically rewarding and successful in some
sense should not blind us to the potential for interplay between logical and e
creative thinking in mathematics. We tend to stress the former as the m
hallmark of mathematical thought so much that we lose sight of the fact that
problems are generated by human beings and that such generation makes use of
the mind not as a logic machine alone but as an instrument for poetic thought
as well.

We are capable of generating not only by modifying the attributes of a -
given problem (as we suggested in the Zvi example) and not only by refuting
experience and logic, but also by making use of extralogical toels of thought
such as imagery, metaphor, and the like.

Unfortunately, so much of mathematical training -at all levels
unnecessarily constricts rather than liberates us by focusing on the narrowly
conceived end product of following a proof that we lose both the ability and
the inclination to generate ideas through the use of these tools.

I recall as a junior taking my first graduate level mathematics course.
It was finite dimensional vector spaces offered by a world-famous
mathematician. The first day we were told that the only things that count are
the axioms and definitions together with rules of logic, and that it was
solely that apparatus to which we ought to appeal in the doing of mathematics.
Anything else was to be interpreted as a bastardization of the discipline. He
proceeded to list the axioms of a vector space, and as sometimes happens under
such circumstances, he got stuck. He stood before us, mumbled a few words and
then turning his back to the class, and blocking the blackbeard with a stomach
that was adequate for the purpose, he sketched a diagram that looked something
like:
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In an attempt then to be consistent with his original advice, he guickly
erased his sketch and proceeded to list a few more axioms and to prove a few
theorems "based solely upon definitions, axioms and logic."

If there is one thing I look back on proudly with regard to that
experience, it is that I dropped the course immediately, and took it the
following semester from a mathematician who, though less world-renowned, was
more in tune at the very least with his own style of learning.

Now, this is an extreme case of confusing generation and verification,
but if we are warned against using even isomorphic type diagrams in this
extreme case, how much more of a heinous crime to use imagery of a looser
nature!

All kinds of images and metaphors direct my activity not only at problem
geperation but at problem solving and in just plain recalling as well. This
machinery is apparently the most well-guarded secret when it comes to
mathematical thought.

For me, "zero" is not the midpoint of an infinite line, nor is it
primarily the identity element under addition. Instead, it is the following
"fellow" from multiplication.

0, 0, 0, . . .

He holds a2 machine gun, looks through a peep-hole and as each of the
nuwbers marches before the wall he annihilates them and collects them as
little images of himself.

It seems to me than an important part of a humanistic education and
experience is disclosing sharing, and understanding the significance of

—— —— —che images that direct dur thinking. [f that can be done well within the
context of mathematical thinking, where can it not be done?
In addition to imagery, use of metaphor is a powerful problem generator.

Two brief personal illustrations will make my point. One day 1 was 'doodling"
with the following multiplication facts:
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1x3 = 3
2x4 = B
3x5 =15
4x6 = 24
5x7 = 35

I was wondering what sense to make out of that when the metaphor of "striving"
popped inte my mind. I saw each number to the right of the equation in an
existential sense &s "striving" to become something it had not yet become.
Instead of what I had there, I saw:

l x 3 is almost 4
2 x4 is almost 9
3 x5 is almost 16
4 x b is almost 25

The right hand side formed perfect squares, and what started out as a
metaphor ended up as an exploration that led to a totally new algorithm for
doing multiplication (Brown, 1974).

At another time I was learning about the golden rectangle:

A E 8
f
D ¥ <

ABCD is a golden rectangle if [ can construct a line,( parallel to a side
so that a square (AEFD) is created together with another rectangle (EBCF)
similar to the original. I gaw this phenomenon not as squares and rectangles,
but as organisms giving birth to another generation yielding the most ideal
form possible and one offspring that is a miniature version of the original.
Again this metaphor led to the generation of many different problems that had
never been dreamed of before (Brown, 1976).

IV. Summar

Where are we now? What do we do with these various observations? We are
suggesting that if for purposes of understanding mathematics an important part
of the curriculum is part/whole thinking and problem generation then for
purposes of understanding self a reflection on these same dimensions is
needed. What is there that encourages or inhibits each of us from generating
problems? To what extent do we make use of (and perhaps hide) images,
metaphor and fantasy in generating problems? What kinds of risks do we
personally take in the questions we ask and the problems we generate?

To what extent are we influenced not only by the machinery of logic,
anti-logic and poetry as we attempt to generate, but by the presence cof a role
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diet of questions whose solution is simple once the teacher reveals the
“trick,” serves to confirm these feelings.

To a math teacher or a strong math student, a question whose solution
goes counter to intuition can be a2 delight. To a math-anxious student, mat
-- in general -- tends to go against intuition. Some textbooks have made
overt attempts to discourage students from trusting or using their intuitic
My old text for introduction to geometry began with a2 series of optical
illusions. The message was ''don't trust your eyes because things are often
not what they seem." Geometry was not supposed to make sense. Until you
could establish something with a rigorous deductive proof, it was best not
believe it or use it.

If we are trying to teach children that making reasonable guesses and
then testing the conjectures is a legitimate problem-solving technique, the
we must also teach that math is basically reascnable and intuition can be
trusced.

Questions which require an "intuitive leap'" can be most satisfying for
students who persevere to the point where the breakthrough occurs. The
majority of students, however, probably lack whatever it takes to persevere
that point. The result will be one more wrong answer to a question which
"tricked" them.

For example:

A visitor arrives at a hotel seeking accommodation for a week.
He has no cash but the hotel owner agrees to accept one tiny gold
ring as payment for each night the visitor stays in the hotel. The
problem is that the seven gold rings are linked together in a chain.
The visitor doesn't trust the proprietor enough to make seven day's
payments 1n advance and the proprietor doesn't trust the visitor to
withhold payment until the end of the week. The visitor, therefore,
must cut links of the chain so that payment of one link can be made
on a daily basis. The question is, what is the least number of
rings the visitor would have to cut so that he could make payments
for his accommodation on a daily basis?

Very little thought will show that it can be achieved with six cuts.
little more thinking and most students will arrive at three curs. As this
a considerable improvement over six, and there is no way of knowing whether
this is the correct solution or not, most students will probably be satisfi
with this. A few students may persevere to the realization that the
proprietor can use rings he already has to make change and, in fact, the
payments can all be made after cutting just one ring {third from one end).
Will the majority who got an answer of three be amused or stimulated by thi

_clever soluticn or will they feel that they have been fooled again and be 1
likely to want to try another one? Questions like this, whose solution is
maximum or minimum, don't provide a method for determining whether a soluti
is correct or not. This lack of the possibility for verification can resul
in a question being abandoned before a correct solution is found, or in a 1
of time being spent on an unproductive line of reasoning.
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A problem which recently appeared on a Canadian math contest paper goes
as follows:

You are given one hundred coins in ten piles of ten coins each.
Ninety of the coins are genuine and weigh exactly one gram each.
All of the coins in one of the ten piles are counterfeit. These
coins look and feel like the genuine coins but each one of them is
.1 grams heavier than a genuine coin. The question is, if you are
given a miniature bathroom type scale which can measure correct to
.1 grams, what is the miniwmum number of weighings you could make to
identify with certainty the counterfeit pile of coins?

The inclusion of this question on the contest paper was unfortunate for a
couple of reasons. First, it was not an original problem and had appeared in
problem books previcusly. Some test writers may have encountered the questicn
before and could acquire full marks with almost no expenditure in time or
effort. Those seeing it for the first time could spend a considerable amount
of time creating any number of schemes for weighing the coins, without knowing
when to quit, as they could not know whether their solution was a minimum. If
this work was done in their heads or on rough paper (with no breakthrough to
the correct sclution) they could receive no marks for some high quality
thinking.

{For those who have not seen this problem solved, the correct solution is
a single weighing. This can be accomplished by placing one coin from the
first pile, two from the second, etc., and noting the discrepancy between what
the scale should read and what it does read. This multiple of .1 grams will
reveal the counterfeit pile of coins.)

It would be a rather different question if it asked, "How i1s it possible
to identify the couterfeit pile with a single weighing?" Then & person doing
the problem would know when a correct solution had been found.

Problems like these need to be presented to those students who have the
tenacity and abilities to arrive at correct solutions or learn from their
failures. 1If handled appropriately they can be valuable for the majority of
students, provided they are given credit for effort and headway in the process
of solving the problem, not just for getting the correct solution. This might
be achieved by presenting a problem like the coins question, limiting the time
spent by students on the problem, and discussing the progress towards its
solution, in class, for a few minutes each day. At first any procedures which
revealed the counterfeit c¢oins would be considered as good solutions. Then
strategies for identifying the coins in fewer weighings could be discovered
and discussed. Finally, with feedback and some hints, the "best" solution
might be discovered. Such a procedure could reduce a sense of having failed
in many students and provide insights into the problem~solving methods.

Some vears ago I ran off class sets of mazes for students to work on when
they had finished their work. The initial reaction from almost the entire
class was "no thanks.” This changed when one of the weaker students picked up
a maze one day and managed to work through it in two or three minutes.
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He was rather surprised and blurted out, "Hey! I got it - it's easy!”
The mazes were popular from that day on and students often asked if they could
take some to do at home.

The significant thing seems to be that they were afraid to try until it
seemed clear that they would succeed. Many stronger students, for whom the
mazes could not be considered as challenging, seemed pleased to attempt and
complete the mazes.

Many problems will yield to a certain amount of perseverance on the part
of almost any student. The following question, which I have used with a
number of classes, is usually solved by anybody who keeps at it for a period
of time. A certain amount of luck alsoc helps and it is often one of the
weaker students who arrives at a correct solution first.

A "ruler" is designed from a blank strip of wood exactly 13 centimetres
long. You want to be able to measure integral values from ! em to 13 em
with this ruler without moving the ruler and with only four marks on the ruler
at four points of your choosing. Where should you put the marks?

If we are to teach children to be effective problem solvers we will have
to develop in them some confidence in their ability to solve problems and a
predisposition to attempt to solve problems in the first place.

Confidence can be built through exposure to problems which are easy to
solve or which require only perseverance and effort rather than the brilliant
"aha" which usually eludes the majority of students.

Questions which by their nature have solutions which are not verifiable
should be used in such a way that feedback can be injected at appropriate
times. Similarly, questions with the possibility for a lot of work being spent
chasing down blind alleys should be monitored to reduce frustrations. Trick
questions should be used with discretion.

There are hundreds of problems available to teachers from a variety of
sources. A judicious choice in the problems we present and the way in which
we present them can help in attaining the goal of producing better problem
solvers.
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Problem Solving: Goals and Strategies

by

Jesse A. Rudnick and Stephen Krulik
Temple University

What is problem solving? Haven't we been teaching problem solving all
along? What are we doing when we go over all those word problems in the
textbooks; isn't that problem sclving? The answers to the latter two
questiong are yes, no, or maybe.

To clarify this state of confusion, let's first define what we mean by
problem solving. Problem solving is the means by which an individual uses
previously acquired knowledge, skills, and understanding to satisfy the
demands of an unfamiliar situation. The existence of a problem implies that
the individual is confronted by an unfamiliar situation, one for which no
apparent solution or path to a solution is readily seen. The key words here
are unfamiliar, and for which no apparent solution or path to a solution is
readily seen. You see, once a student has seen a problem and been shown a
method of solution, additional exercises similar to the original (even though
the names, the setting, and the numbers have been changed) are no longer
problems. They are exercises, merely drill and practice. You might say that
the students are engaged in solving problems, but they are not engaged in
problem solving.

Problem solving is a process, a systematic search by the individual
through the piven data, and a synthesis of the findings into a neatly executed
solution. Indeed, the sclution is not the final answer, but rather the entire
process from the original confrontation to the final conclusion. Thus the
word problems that appear in most textbooks do not provide problem—solving
experiences because most teachers do the initial thinking for the students and
then provide them with & model, a method, or an algorithm for doing each of
the several types of problems. The fact is that most of us and the children
as well, try to identify the "type" of problem and then attempt to recall how
we do that particular type. There is really nothing wrong with this
procedure, if you are trying to solve specific problems, or problem types.
Unfortunately, this does not serve the purposes of problem solving.

Most of the word problems that appear in a textbook are designed to
support mathematical skills that have just been developed. Indeed, this is
the crucial point of the recommendations of the National Council of Teachers
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of Mathematics (1980) that skills should be developed to give the students the
power to resolve problems; the problems are not materials to support the
skill. S8kills, in the absence of the ability to utilize them in appropriate
settings, are useless!

It is probably unrealistic at this time to believe that the school
mathematics curriculum will be immediately rewritten with a central theme of
problem solving. If it ever happens, it will not be for a considerable length
of time. However, in the meantime, or until such time as substantial changes
are made, classroom teachers can, on their own, implement the N.C.T.M.
recommendations for the 1980's by making problem solving an ongoing activity
in their classrooms. Some problem-sclving experience can probably be worked
into each and every classroom lesson, if the teacher feels it is important
enough and prepares the lessons accordingly.

Before we consider problem-solving activities for the classroom, let's
discuss problem sclving itself. How do we solve problems that we have not
seen before? What do we do when confronted by a perplexing situation that
needs resolution? Perhaps if we can respond to these questions, we will gain
some insights that will prove helpful in the school classroom.

Polya (1957) states that successful problem solving involves four steps:

1. Understanding the problem

2. Selecting a strategy

3. Solving the problem

4. Looking back at the precblem.

When we are confronted by a problem, the first thing that we usually do is
read the problem. This means (1) look for key words; (2) try to understand
the situation; (3) visualize the situation in your mind; (4) look for the
relationships that exist between the data; and (5) find out what is being
sought. Then, accerding to Polya, a strategy should suggest itself which, if
treated carefully, will result in a correct answer. (We consciously avoid
using the word “solution" at this point, because we want tc emphasize the fact
that in problem solving the solution is the entire process, not just the
answer.)

But, strategy selection is not just an automatic outcome of reading or
understanding the problem. How does one select a strategy? Indeed, what are
the strategies one can employ to find an answer?

We have identified eight of the most widely used strategies. They are
not unique, nor is the list by any means exhaustive. We list them below:

1. Pattern recognition

2. Working backwards
—— ———-—— ~—— 737 Guess and test

4. Simulation or experimentation

5. Reduction or looking for a simpler problem

6. Exhaustive listing

7. Logical deduction
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Data representation

8.1 graph

8.2 equation

8.3 algebraic expression
8.4 table

8.5 chart

8.6 diagram

Although it would be impossible to illustrate each of these strategies in this
paper, let us take a look at some of them, with some illustrative problems for
each. As an illustration of the Guess and Test strategy, consider the
following problem:

A textbook has been opened to pages 26 and 27. If we multiply these
two numbers, their product is 702. Jane opened her math book and
found that the product of the numbers on the two facing pages was
8,556. To what pages was her book opened?

As your students read this problem and consider the information it contains,
they should be brought to realize that the numbers which appear on facing
pages of a textbook are always consecutive. Thus, one of them is even, one of
them is odd, and their product will always be even. If the students are
encouraged to try a pair of successive numbers, say 34 and 35, they find that
the product of these numbers is less than 8,556. If they try a larger pair,
say 110 and 111, they find that this product is too large. Thus the pair of
numbers we wish to find lies somewhere between these two pairs. This is a
good notion for the students to learn at this time -~ the idea of approaching
4 limit from both sides. Now, by trying various products within this range,
they should find the correct pair, 92 and 93. MNotice tooc, that this is an
excellent time for the teacher to introduce the concept of a square root. If
the students take the square root of 8,556 (92.4986) they need only take the
whole numbers which lie on either side of the square root, namely 92 and 93.
If practice in multiplication is not needed at this time, this problem is a
good one to explore with a calculator. (This is basically a consecutive
integer prcoblem, which, in Algebra, would be solved with the equation

x {( x+1) = 8,556.)

In many cases, it requires a combination of strategies to resolve a
problem. For instance, an elegant solution to the following problem employs
three of the strategies on our list: simulation, recording data in a table,
and pattern recognition.

Eight members of the Harlem Globetrotters are warming up for their
game with the Washington Generals. The players are in a circle.
Each player passes the ball to each of the other players. How many
times is the basketball tossed?

This problem could be solved by actually having eight students stand in a
circle and toss a basketball or crumpled piece of paper to each of the other
students while counting. However, you may wish to help the students prepare a
table similar to the following:
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The Problem-Solving Cartoons used in this monograph were created hy the
students in West Block and North West Block of the University Heights
Elementary School, Calgary, Alberta.
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