O-00ps!

Topic: \quad Order of operations
Level: \quad Grades 6-8
Number of
Players: $\quad 3-4$
Materials and
Preparation:
Set of O-oops cards, developed on $10 \mathrm{~cm} \times 16 \mathrm{~cm}$ cards; a model of a possible set is provided here.

Procedure: 1. The dealer shuffles the cards and deals them all out. Each player matches the expression of numbers with the correct value, using the correct order of operations for the pairs in his or her hand. These pairs are placed face up on the table.
2. Play begins by each player's passing 3 of the remaining cards to the player to the right. If new pairs are formed from this action, each player adds these to the spread in front.
3. To begin the draw the player to the left of the dealer draws a card from the hand of the player to his or her left. If the drawn card completes a pair, the player plays the pair face up with the others. Otherwise, the player keeps the card and the next player to the left draws from the player to his or her left.
4. Play continues until all the pairs are formed, leaving 1 player with the " O -oops" card. This person is the loser. Players drop out of the game when their cards are gone.

Variation: The player left with the "O-oops" card is the winner!

\begin{tabular}{|c|c|c|c|c|}
\hline 11 \& \begin{tabular}{l}
40 \\
06
\end{tabular} \& \[
12 \times 4-16 \div 2
\]
\[
乙 \div 91-\downarrow \times て \downarrow
\] \& \begin{tabular}{l}
32 \\
乙モ
\end{tabular} \& 2 \\
\hline 9

6 \& $$
40 \div 5 \times 4
$$

$$
\nabla \times G \div 0 \downarrow
$$ \& \[

7-3-2
\]

$$
z-\varepsilon-L
$$ \& \[

4+3+2
\]

$$
\tau+\varepsilon+\downarrow
$$ \& \[

$$
\begin{aligned}
& 1000 \\
& 0001
\end{aligned}
$$
\]

\hline | 3 |
| :--- |
| ε | \& \[

(3+12) \div 5
\]

\[
g \div(2 t+\varepsilon)

\] \& | 5 |
| :--- |
| G | \& | 17 |
| :--- |
| $\angle 1$ | \& | 1 |
| :--- |
| 1 |

\hline $$
2-2 \div 2+2 \times 2
$$

$$
z \times 2+2 \div z-2
$$ \& \[

(3+2) \times 4-3
\]

$$
\varepsilon-\triangleright \times(\tau+\varepsilon)
$$ \& \[

\frac{32 \div 8+3}{2+5}
\]

$$
\frac{s+2}{\varepsilon+8 \div ट \varepsilon}
$$ \& \[

8 \div 2+6 \div 2
\]

$$
2 \div 9+2 \div 8
$$ \& \[

5+1 \div 1
\]

$$
1 \div 1+5
$$

\hline $$
18-12 \div 2
$$

$$
2 \div 2 t-8!
$$ \& 7

L \& 6

9 \& 12 \& $$
(4 \times 5)^{2}
$$

$$
z_{i}(S \times b)
$$

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline sdoo-O \& \begin{tabular}{l}
21 \\
เて
\end{tabular} \& \[
(5+2)(5-2)
\]
\[
(z-s)(z+s)
\] \& 4

\square \& | 18 |
| :--- |
| 81 |

\hline | 31 |
| :--- |
| 1ε | \& \[

\frac{25-9}{5-1}
\]

$$
\frac{1-G}{6-g Z}
$$ \& \[

\frac{100-64}{10-8}
\]

$$
\frac{8-01}{t 9-001}
$$ \& \[

7 \times 4+3
\]

$$
\varepsilon+\triangleright \times L
$$ \& \[

5+3 \times 2
\]

$$
\tau \times \varepsilon+\varsigma
$$

\hline | 49 |
| :--- |
| 67 | \& \[

49+5 \times 0
\]

\[
0 \times s+6 t

\] \& | 8 |
| :--- |
| 8 | \& | 10 |
| :--- |
| 01 | \& | 0 |
| :--- |
| 0 |

\hline $$
10 \div 5 \times 4
$$

$$
\checkmark \times \mathrm{G} \div 0 \downarrow
$$ \& \[

8+6 \times 1 / 3
\]

$$
\varepsilon / L \times 9+8
$$ \& \[

5-3-2
\]

$$
\tau-\varepsilon-s
$$ \& \[

(12-2)^{3}
\]

\[
\varepsilon(Z-21)

\] \& | 400 |
| :--- |
| 006 |

\hline
\end{tabular}

