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In the honors course in Grade 11, as well as in Mathematics 1010 at Memorial, one 
spends considerable time teaching how to find, when they exist, rational roots of a 
polynomial with integer coefficients. Several worth-while topics are usually taught 
or recalled at this time, namely the Fundamental Theorem of Arithmetic to prove 
the main theorem about possible rational roots, the relationship between roots and 
linear factors, and synthetic division as a fast way of checking the possible rational 
roots. {The next natural followup to this topic at the university is the more general 
algorithm known as Kronecker's Theorem for factoring completely into irreducible 
(prime) factors any polynomial with integer (or rational} coefficients. 

In addition to spending time finding rational roots of a few very carefully selected 
polynomials, one should spend more time finding all the real roots of polynomials 
with real coefficients. This is possible now that all students have easy access to the 
calculator. 

As many of you know, it is impossible, in general, to write a formula for the roots 
of a polynomial in terms of arithmetic operations of the coefficients and extraction 
of roots for a polynomial of degree greater than or equal to five. For lower degrees, 
there are formulas for the roots. In fact, in 1830 a brilliant young mathematician, 
Evariste Galois, two years before being killed in a gun duel over a girl before his 
21st birthday, gave a very beautiful, necessary and sufficient condition that a given 
polynomial equation be solvable in radicals (in terms of arithmetic operations and 
extraction of roots) and hence showed that, in general, fifth and higher degree 
polynomial equations cannot be solved in radicals. (See the historical note on pages 
392 and 393 of Johnson et al., 1975). In particular, he showed that, f(x) = a
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+ ... + a1 x + ao = 0, where a1 are rational numbers, cannot be solved in radicals 
provided p is a prime greater than or equal to five, f is irreducible (prime) over Q, 
and f has two complex (conjugate) roots only. Two such examples are f(x) = xs -
6x + 3 and f(x) = 3x7 

- 7x6 
- 7x3 + 2lx2 

- 7. By elementary calculus, one can show 
that the first polynomial has three, and the second, five real roots. A very easy suf­
ficient condition for a polynomial with integer coefficients to be irreducible, known 
as Einstein's criterion, states that if we can find a common prime divisor of each of 
the coefficients of f except the leading one and it does not divide the constant term 
any more than once then the polynomial is irreducible. For the first polynomial, 
we see that the prime 3 satisfies the conditions of irreducibility; for the second, the 
prime 7, satisfies the conditions for irreducibility. Hence, we are guaranteed for the 
above two polynomials there are no explicit formulas for the roots. 

The method for finding irrational zeros described by Johnson et al on pages 379 to 
381 is a good one and is a place where linear. interpolation can be reviewed. Let 
us consider the example, f(x) = xs - 6x + 3, the problem being to find the three real 
zeros to within some prescribed accuracy. Let us assume for now that we know the 
most efficient way to evaluate f(x) on our calculator. We find that f(-1) = 8 and f(-2) 
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= -17; hence, one root r lies between -2 and -1. We may wish to find the next digit 
by trial and error since, if the initial guesses are far apart or near a relative, extrema 
for the function using linear interpolation may not save us any time. So guessing 
intelligently, we see that f(-1.7) = -1 and f(-1.6) = 2.11 so our root r lies between 

-1.7 and -1.6. By comparing slopes where r = -1.6 - a, we have a/.1 = 2.11/(2.11 + 1) 
and hence a = .07, so we guess that r is either between -1.66 and -1.67 or between 

-1.67 or -1.68. We find that f(-1.68) = -0.3 and f(-1.67) = 0.03; hence r is between 

-1.67 and -1.68, and so we continue. Depending on the accuracy of our calculator, 
we could ask for r accurate up to eight or nine places after the decimal. In fact, the 
real roots correct to eight places are -1.67093526, 1.40164188, and 0.50550123. 

For the polynomial f(x) = 3x7 
- 7x6 

- 7x3 
+ 2 l x2 

- 7, one of the irrational zeros 
correct to eight places is -1.23707354, since one can check that f(-1.237073543) = 
7.6 x 10-8 and f(-1.237073544) = -6.5 x 10-8 . Noting that f(-2) = -699, f(-1) = 11, 
f(0) = -7, f( l )  = 3, f(2) = -43 and f(3) = 1451, we know approximately where all 
the zeros are. In fact, the points (-1, 11), (0, -7), (1, 3) and (2, -43) are the relative 
extrema of the function. 

For the information of the secondary school mathematics teachers, we record here 
some detailed solutions to some of the problems in section 8-10 of the Johnson 

text. The three real zeros of x3 
- 5x + 1 are -2.330058739, 2.128419066, and 

0.201639674. For exercises 6, 7, and 8 on page 382, the unique real zeroes of each 
of x3 

+ x - 3, x3 
- 3x2 

- x - 6 and x3 
+ 3x2 

- 3x + 2 are 1.213411662, 3.706527954, 
and -3.900571874 respectively. 

The next problem is that of evaluating f(x) on our calculators in as efficient a way 
possible. For an arbitrary polynomial: 

f(x) = a
n

xn 
+ a

n-lXn- l  
+ ... + a1 x + ao of degree n, the first method of evaluating is 

the straightforward one of going from left to right evaluating term by term. For the 
purposes of comparison, let us assume that entering a number, storing a number, or 
recalling a number from memory requires one key operation each. Evaluating f(x) 
in this way on a calculator with true algebraic logic requires 6n + 1 key steps. Even 

for the Hewlett-Packard (HP) calculator with reverse polish arithmetic, this method 
requires 6n + 2 key steps. For the average student, this may well be a suitable 
method for finding f(x). However, there is one major problem if students have 
Texas Instrument (TI) calculators. The TI calculators (as well as others such as 
Canon), as contrasted for example with the Casio Calculators, cannot raise a nega­
tive number to an integer power; hence, cannot evaluate f(x) by the above method 
for negative x and degrees greater than two. (Try evaluating (-2) 3 on the TI calcula­
tors.) 

A second, faster method of evaluating f(x) is rewrite f(x) in the nested form: 

and start evaluating from the inside out. The calculators with true algebraic logic will 
hinder us here. Instead of using the bracket feature on your calculator, use the equal 
button (if your calculator has true algebraic logic). If f(x) is evaluated by the key 
steps: enter a

n
, times, enter x, store x, plus, enter a

n-1, equals, times, recall x, plus, 
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enter an-2, equals, etc., then 5n+2 by steps are required. However, on the HP calcu­
lators, only 3n+5 steps are required. If we had used the brackets, then 6n+ 1 key 
steps are required, so we might as well have evaluated f(x) in the more straightfor­
ward way described earlier. 

In any case, you should get to know your particular calculator, because you may be 
able to discover shorter methods of evaluating f(x). For example, using a TI-35, 
one can evaluate fourth- and lower-degree polynomials by writing f(x) in the form: 
x · (x · (x · (x · a4 + a3) + a2) + a1) + ao, then the argument x need not be stored, 
since it remains in the register as "times" and "left bracket" are pressed. No higher 
degrees can be evaluated in this way, since there can be, at most, four pending opera­
tions on the TI-35. 
--

On some calculators, e.g., Casio College fx-100, "times" can be omitted before "left 
bracket." 

Using synthetic division to evaluate f(x) will not result in fewer key steps, since this 
method is exactly the same as the nested form above, requiring 5n+2 key steps. 

Students should be given the opportunity to approximate irrational roots of poly­
nomials. Finding rational roots requires learning some very nice algebra, but it is 
very limited in the polynomials selected. It would also help us in Calculus I at uni­
versity if students could solve the equation f 1 (x) = 0, where f1 (x) is a polynomial 
of degree three or more, and where the roots need not be rational. 
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Probability and Statistics Corner 
Jim Swift 
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This first article for the year of 1982 coincides with another first, the first issue of 
the Canadian Mathematics Teacher. I hope that PS Corner will become a regular 
feature of the journal, as it has in Vector, the journal of the B.C. Association of 
Mathematics Teachers. 

At the recent Leadership Conference on Statistics in the Classroom, organized by 
the ASA/NCTM Joint Committee on the Curriculum in Statistics and Probability, 
I had the pleasure of meeting teachers from British Columbia, Alberta, Ontario, 
and Nova Scotia who were involved at some level of teaching statistics. All of those 
provinces are moving strongly toV'{ard a greater emphasis on statistics and proba­
bility in all levels of the curriculum. The majority of those present at the leadership 
conference were working at, or had a major interest in, Grades K-8. Now that it is 
generally accepted that future revisions of the mathematics curriculum must "rec-
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