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One of the greatest challenges facing teachers of mathematics in elementary and 
middle schools lies in providing for the needs of learners with differing abilities and 
interests. That individual differences among students exist at all grade levels and that 
the range of these differences increases from grade level to grade level is common 
knowledge among teachers and has been well documented by research. Jarvis ( 1964), 
for example, found that Grade 6 students may vary by as much as seven years in 
arithmetic achievement, and that even among students with IQs of 115 or higher, 
the range of achievement is about five years. 

Several procedures for accommodating individual differences in mathematics have 
been explored over the years. One approach that has received considerable attention 
is self-paced instruction. Self-paced or individualized programs are designed to en
able each student to progress at his/her own rate of speed through a sequence of 
learning units. Research comparing the effectiveness of such programs with conven
tional teacher-directed settings, however, indicates that in general, and particularly 
in Grades 5 through 8, the self-paced approach has been ineffective in mathematics 
(Schoen, 1976). The lack of interaction among students and the reduced contact 
of students with their teacher are two of the major drawbacks of such programs. 

Another organizational scheme at the school level for meeting individual differences 
is homogeneous grouping of students. Although differences among students will 
still exist, that approach can reduce the range of ability of achievement within a 
class, permitting the teacher to adjust instruction to suit the needs of more able, 
average, or less able students. Grouping on the basis of ability has been found in 
some studies to be effective, particularly for students at upper ability levels. Where 
grouping is based on achievement, research findings are more variable. It appears 
that the teacher is the most important factor in determining the success of any 
system of grouping (Suydam and Weaver, 1970). 

Grouping may also be used within a self-contained class. For example, three in
structional groups, studying different content and working at different levels, could 
be created. An alternative procedure involves flexible grouping with all students 
studying the same topics. Under this plan each new unit is introduced to the whole 
class. Following a period of instruction relating to the basic objectives of the unit, 
a diagnostic test is administered. Three groups-reteach, practice, and enrichment
are then formed (Underhill, 1972). The enrichment group, having mastered the 
basic material, studies related topics or investigates the content at a deeper level. 
Students from the three groups come together again for the unit culmination and 
the beginning of the next topic. 

A great many teachers of mathematics in Grades 4 to 8 work with heterogeneous 
groups of students and do not employ self-pacing or grouping for instruction. The 
purpose of this article is to describe and illustrate a strategy for accommodating in-
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dividual differences in mathematics within such a classroom setting. The suggested 
strategy involves the use of multilevel performance problem-solving activities. 

Most, if not all, concepts and problems in mathematics can be presented and in
vestigated at a variety of levels of sophistication. Thus, in teacher classes composed 
of students of mixed ability, it is not only desirable, but often possible, to provide 
learning activities that develop or reinforce the important concept or skill of the 
day's lesson and that permit each student to work at his/her level of understanding. 
To be appropriate for slow learners, the problem or game setting must allow each 
student to begin working immediately at some level. For example, the task might 
initially involve the use of concrete materials or require only basic counting tech
niques. To accommodate the mathematically talented, the problem could be open 
to more than one interpretation or have several methods of solution, and solving 
the problem would suggest to the student new problems to be explored. Capable 
students should also be encouraged to discover why a result holds and to generalize 
beyond specific cases. 

111 describe four learning activities that possess these characteristics. The first is a 
mathematics laboratory activity; the second, a setting for computational practice; 
the third, a game; and the fourth, a simulated "real-life" problem-solving project. 
For each activity, a procedure for presenting the task to the class is suggested, pos
sible learning outcomes are described, and ways in which the activity might accom
modate the needs of less able and more able students are discussed. 

Activity 1. Area and Perimeter. 
Materials. Thirty-six square tiles for each pair of students. 

Teacher presentation and instructions 

Using an overhead projector, the teacher ar
ranges the 36 tiles to form a rectangular re
gion as indicated. Terminology is developed/re
viewed using this example. The base of the rec
tangle is (by counting) four units long and the 
height is nine units. The perimeter or distance 
around the outside of the rectangle is ( count
ing) 26 units. The area, which is the number of 
unit squares covering the region, is (again 
counting) 36 square units. 

The students are then instructed to make other 
rectangular regions, using all 36 tiles each time, 
and to find the perimeter and area of each, re
cording findings in a table as illustrated. 

base height perimeter area 

4 9 26 36 

Learning outcomes and individual differences 

All students should be able to use the tiles to form another rectangular region and 
find its perimeter and area. Low-ability students usually require extensive work at 
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the concrete level and will likely continue to use the materials to form the various 
rectangular regions throughout the class period. Using basic counting techniques to 
find the perimeter and area will reinforce the meaning of these concepts and the dif
ference between them. This experience will normally lead students to develop more 
efficient ways of finding the perimeter and area of a rectangle. They are often sur
prised, having "discovered" that area is base times height and perimeter can be 
found by doubling the sum of the base and the height ( or taking double the base 
plus double the height), that these are the formulas they were previously taught. 
That the. area is the same in all cases and the reason why this should be so are, for 
some students, non-trivial learning outcomes of this activity. Finding that the perim
eter of the various rectangles is not constant surprises most students. It is usually 
noted that long, narrow rectangles have large perimeters and the square the smallest 
perimeter. 

More able learners require less work at the concrete level and move quickly into ab
stract thinking. In this activity, capable students will likely put aside the tiles after 
using them to make one or two rectangles, and complete the table using symbolic 
procedures. The possible rectangles are related to the factors of 36, a formula is 
used to compute perimeter, and the area is seen immediately to be constant. These 
students may then be encouraged to draw graphs of the data; for example, they 
could plot base against height and perimeter as a function of base length. They 
could also go on to consider the perimeters of families of rectangles with areas of, 
say, 40, 26, and 31 square units, in order to generalize about the shape with the 
minimum perimeter for a fixed area. 

An investigation of the areas of simple closed curves with a constant perimeter 
would be a natural follow-up activity. For example, if 20 m of fencing were to be 
used to enclose a garden plot, what shape would have the greatest area? 

Activity 2. Practice and Patterns in Addition. 

Teacher presentation and instructions 
On the chalkboard, the teacher draws a 2 x 2 
grid and writes a number in each of the four 
cells (Figure 1). With student participation, 
the numbers are added two at a time; first 
across, then down, and the sums written as in
dicated (Figure 2). Two loops are drawn on 
the upper corners of the grid, and in them are 
written the sums of the pairs of numbers along 
the diagonals (Figure 3). Next the two hori
zontal sums are added, and the answer is writ
ten underneath (Figure 4). The vertical and di
agonal sums are also added, and it is noted 
(with appropriate flair) that the three answers 
are the same. 

The question that should arise from this pres
entation is: "Does it always work?" Each stu
dent is asked to choose his/her own set of four 
numbers and try it again. The question "Why 
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does it work?" should then_be raised (by the class). After discussion, the setting is 
used to provide practice in addition. The numbers can be multi-digit whole numbers, 
decimals, fractions, or mixed numbers. Each student creates and checks his/her own 
set of exercises by selecting four numbers and following the procedure. 

Learning outcomes and individual differences 

Working through this procedure requires the student to do nine addition questions, 
and each one must be done correctly in order for it to work. This task, however, 
appears less forbidding to the slow learner than a worksheet or textbook assignment 
of nine questions. Moreover the feedback is immediate and comes from the work 

. itself rather than from an external authority. Pupils of lesser ability might at first 
choose easier numbers to work with, but having completed the task once, might be 
willing to try it again (nine more questions) with larger or more difficult numbers. 

High-ability students can work with numbers requiring more complex computation 
and will perhaps do more sets of exercises in a given period of time than other class 
members. This setting, though, can be extended to provide worth-while mathemati
cal q,Ctivity beyond practice in addition, through consideration of "what if?" ques
tions. �ore capable student$ can be encouraged to formulate and investigate such 
problems as "What if the operation is multiplication, or subtraction?" It still works 
for multiplication (and therefore provides a setting for practice in this topic). For 
subtracti,:m, questions such as "Why doesn't it work?" "What does happen?" and 
"Under what conditions does a particular result (for example, two of the three dif
ferences are the same) follow?" can be considered, Thus the thrust of learning ac
tivity is shifted from computation to discovery, hypothesis-building, and verifi
cation. 

Activity 3. Nim (a strategy game). 
Materials. Eight counters for each pair of students. 

Teach er presentation and instructions 
The game with the eight counters is played by two people as follows. Taking turns, 
each player removes one, two, or three of the counters. The player who is forced 
to take the last of the eight counters loses. 

@ Learning outcomes and individual differences 
x:x:· After varying amounts of  experience in this 
,K_.Y-.. game situation, students will discover that the 

player who has the first turn can always win 
by removing three counters on the first play. 
The logical strategy of considering all (in this 
case, three) possible moves by the second 
player and the corresponding subsequent moves 
by the first player can then by discussed as a 
"proof" for the winning strategy. 

As previously stated, the point that the first 
player can always win and that chance is not 
a factor is understood by different students at 
different times during the activity, and it is 
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clear to an observer when an individual actually gains an understanding of the 
situation. The teacher should not attempt to explain the logic to someone who has 
not discovered it, but should simply allow the student to continue to play the game 
until the idea is understood. 

For those who discover and understand the winning strategy, the game is, of course, 
not a game. However, if any one of the variables is changed, then the process of de
termining a winning strategy must be repeated. Varying the game conditions as 
follows provides natural extensions of the learning activity. 

1. The player who takes the last counter wins. 

2. The number of counters is varied. For example, the game is played with nine, 
twenty-one, or fifty counters. 

3. More than three counters (for example, up to four or five or nine) may be re-
moved at each play. 

Each combination of the above variables leads to a different winning strategy, but 
the logical precedure for determining the strategy is the same. Ask the class to es
tablish conditions for one of these games, determine how to win it, and then demon
strate to the teacher that he/she can win every time. For example, a student might 
say to the teacher, "Start with 15 counters. Remove one to four counters each play. 
The person who takes the last counter wins. And you have to start." 

Having determined the winning strategy under a variety of conditions, mathemati
cally talented students could be challenged to begin to generalize the method. For 
example, if one to nine counters may be removed, and the person who takes the 
last counter loses, what should be the first move if you start with 60, 72, 87, ... 
counters? Suppose three, four, five ... counters may be removed on a play? 

Activity 4. Shopping Spree. 
Materials. Department-store catalogues, calculators. 

Teacher presentation and instructions 
The catalogues are distributed to the class-one to every student or pair of stu
dents. The students are told they may "spend" up to $400 to purchase clothing 
shown in the catalogue, assuming there is a 20% discount on prices listed and that a 
6% sales tax must be paid. Since an implicit aspect of the task is to spend as close to 
$400 as possible (but not more), the procedure is repeated several times with differ
ent numbers by each student. In working on the task, two different problems emerge: 
(1) What is the maximum total list price? and (2) Can I find a desirable combination 
of items costing a sum close to this amount? 

While this activity provides opportunities for practice in estimation, mental arith
metic, and computation, hand-held calculators should be permitted and their use 
encouraged. The problem-solving strategy of using successive approximations is 
encountered in exploring the first problem. Investigating the second problem pro
vides students practice in formulating their own questions and identifying rele
vant data needed to answer them. 

While doing this activity, students often generate alternative methods for calcula
ting the final cost of the clothing. Consideration of these procedures can lead to 
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some interesting mathematical questions. I'll list some of these: 

1. Could you compute the final price (sale price plus sales tax) of each item sep
arately and then add these figures? (Yes) 

2. Could you simply subtract 14% (20%-5%) from the list price -to get the final 
cost? (No) 

3. Do you get the same final answer if you first add the 6% sales tax and then sub
tract the 20% discount as you get doing it the other way? (Surprisingly, yes.) 

4. Could you compute the sale price in one step instead of two? (Yes, multiply by 
0.8.) 

5. Given the list price, could you compute the final cost in a single step? (Yes, 
multiply by 0.848.) 

The equation, final cost = list price x 0.8 x 1.06, provides the answers to questions 
2, 3 and 5 and also gives a way of finding the maximum list price directly: 

maximum list price= $400-,- 0.848 = $471.70 

To provide practice in solving verbal problems, have each student make up three 
story problems based on information in the catalogue. Encourage each student to 
create interesting and challenging questions, but to be able to answer them him
self/herself from the information provided. After the students have prepared the 
problems and worked out an answer key, problem sets could be exchanged (between 
students of comparable ability). Solutions would be returned to the authors of the 
problems for marking. 

Summary 
The purpose of this article was to provide examples of multilevel performance 
problem-solving activities that can be used to accommodate individual differences 
among students in a heterogeneous whole-class instructional setting. Such experi
ences can enable slower learners to enjoy immediate success as they develop and 
practise basic concepts and skills. At the same time, more capable students may ex
plore the topics in greater depth and engage in study involving higher-level mathe
matical processes. Participation in these class activities under the guidance of a 
teacher also provides valuable training that prepares the student for independent 
work on open-ended problems. 

Many exercises and activities in school mathematics can be adapted by the teacher 
to allow for multilevel work. Two sources of appropriate materials are the "Ideas" 
s�ction of the Arithmetic Teacher (Hirsch and Meyer, 1981) and the "Activities" 
section of the Mathematics Teacher (Hirsch, 1980). The use of multilevel perform
ance problem-solving activities as a means of differentiating instruction in a whole
class setting can contribute in a positive way to the development of an instructional 
program that is rich for all students and enriched for more capable learners. 
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Teach Nothing About Geometry 
Alton T. Olson 

University of Alberta 

Contrary to a likely interpretation of the title, I am not advocating the deletion of 
geometry from the mathematics curriculum. In fact, I am quite concerned about the 
near future of geometry in the curriculum and would not wish to see its position 
eroded any more than it is. I am concerned because the coming emphasis on and en
thusiasm for computer literacy and microcomputer applications could easily push 
geometry further into the background, simply because geometry doesn't lend it
self easily to micro-computer uses. 

To return to the title, I am advocating the teaching of nothing about geometry in 
the sense of "no-thing." "No-thing" implies that we are not talking about a "thing." 
It is generally held that geometry instruction ought to include practice in space 
visualization, skills for organizing knowledge about space, attitudes favorable to 
local space exploration, and so on. But these are no-things that are about things. 
They are procedural skills, attitudes, or the seeing of relationships. The notion that 
no-things can be about things is crucial here, since the distinction between things 
and no-things is frequently the essence of arguments about the value of using geo
metric activities in the classroom. As an example, the "seeing of geometric relation
ships" might be acknowledged as an important mathematical goal, but none the less 
be slighted because it lacks a certain concreteness; for example, it is difficult to de
fine as a teaching objective and is certainly difficult to test. None the less, a growing 
body of research indicates the existence of certain generalized skills and abilities 
that are important in problem-solving and applications. We ought to recognize these 
no-things of geometric activities and acknowledge their importance by insisting on 
their inclusion in the mathematics curriculum. 

To further illustrate some of the points that I have been trying to make, I will de
scribe and use a family of geometric activities. (Incidentally, these activities can 
easily be put into a game format if desired.) The activities will be defined, and ref
erences will be made to the no-things of geometry that they illustrate. 

The game of "Turn a Pattern" (TAP) 
(This is adapted from Marion Walter's Boxes, Squares and Other Things.) I will be
gin with a discussion of the rules for the two-dimensional version of the game: 
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