By discussing the three word problems above, the students should perceive that a complete reliance on cues will prevent them from getting all three problems correct. A better approach would be to consider the context in which the cue word appears. That is a consideration of the basic structure of the problem.

If word-problem assignments contain word problems of each type, they should prevent students from relying totally on cues contained within the problem.

"Face" Values

Barry Witkze

Barry Witkze teaches in Russell, Manitoba.

Here is a set of activities for students in Grades 6 to 8. Try them out. How good are your students at finding patterns? Answers and hints appear at the end of the activities.

A. Complete the last four

1	\odot	=	1	+	0	=	1									
2	\odot	=	2	+	1	=	3									
3	\odot	=	3	+	2	+	1	=	6							
4	\odot	-	4	+	3	+	2	+	1	=	1()				
5	\odot	.=	5	+	4	+	3	+	2	+	1	=	1	5		
6	\odot	=	6	+	5	+	4	+	3	+	2	÷	1	=	21	
7	\odot	=														
8	\odot	=														
9	<u>(;</u>)	=														
10	\odot	=														

B. Complete the chart (use the above information)

10	20	30	40	5 😳	60	70	80	90	10 😳	110	12 🖸	-	100 	1000 	n 🖸
1	3	6	10	15	21							-			

C. "Sign" Values (study group A, and then try group B)

GROUP A	GROUP B
STOP = $2 \odot 1$	DEADEND =
MEN WORKING = $4 \bigcirc$	MERGE =
STEEP HILL = $3 \bigcirc 3$	NO PARKING =
DETOUR = 3	ONE WAY =
SLIPPERY WHEN WET = 5 \bigcirc	FALLING ROCKS =
$YIELD = 2 \odot 2$	EXIT =
DEER CROSSING = $4 \odot 2$	PLAYGROUND =
BUS STOP = $3 \bigcirc 1$	LOOSE GRAVEL =
LANDSLIDE = 4 \bigcirc 3	NO U TURN =
ENTRANCE = $3 \bigcirc 2$	

D. Think of other road signs that equal: $3 \bigcirc 4 \odot 5 \odot$

E. Counting in "face" values

Count up to 20 (or 5 😳 5) in "face" values.

F. Basic skills (give answers in "face" values)

$2 \bigcirc + 3 \bigcirc =$	$5 \stackrel{(\cdot)}{\odot} - 4 \stackrel{(\cdot)}{\odot} =$	$1 \stackrel{\bigcirc}{\odot} \times 2 \stackrel{\bigcirc}{\odot} =$
$3 \bigcirc + 4 \bigcirc =$	$4 \bigcirc - 3 \bigcirc =$	$2 \bigcirc \times 3 \bigcirc =$
$3 \bigcirc 2 + 2 \bigcirc 2 =$	$6 \bigcirc 2 - 3 \bigcirc 3 =$	$2 \bigcirc 2 \times 3 \bigcirc =$

G. Ratios and comparisons

Write $\frac{3 \odot}{4 \odot}$ in simplest terms.

Which is larger $\frac{6}{5} \stackrel{\bigcirc}{\odot}$ or $\frac{5}{4} \stackrel{\bigcirc}{\odot}$, and by how much?

H. "Math" values match (place numbers 1 to 12 in the blanks)

COMMENTS AND ANSWERS

My Grade 7s and 8s found this activity both interesting and challenging. Read 5 \bigcirc as "five face"; read 4 \bigcirc 3 as "four face three."

A. This is a good sequence activity Answers (in order): 28, 36, 45, 55

B. The last three parts of this chart are a real challenge and good for discussion. Answers (on the chart):

28	36	45	55	66	78	+	5050	500500	$\frac{n(n + 1)}{2}$
----	----	----	----	----	----	---	------	--------	----------------------

C. Any related words or groups of words may be used. (e.g. "Food" values such as "pizza = $2 \bigcirc 2$.")

Students may need the following hints: The number of words is irrelevant. The total number of letters is relevant. STOP = $2 \bigcirc 1$ actually means STOP = $2 \bigcirc + 1$.

The answers are derived simply by counting the total number of letters and representing that number by a "face" value. (e.g. STOP = 2 \bigcirc 1 means STOP has four letters: 2 \bigcirc = 3 + 1 or 4)

Answers (for Group B):

D. Students simply try to think of other road signs that have a total of 6, 10, or 15 letters. My students came up with these:

- 3 ⁽ⁱ⁾ bridge, school, one way, no exit, police
- 4 ^(C) fire escape, school zone, picnic site, no left turn
- $5 \bigcirc$ railway crossing, reserved parking, men working ahead

E. Represent the numbers 1 to 20 in "face" values.

Answers:

1 😳	3 😳	4 😳	5 😳
1 😳 1	3 😳 1	4 😳 1	5 😳 1
2 😳	3 😳 2	4 😳 2	5 😳 2
2 😳 1	3 😳 3	4 😳 3	5 😳 3
2 😳 2		4 😳 4	5 😳 4
			5 . 5

G. Answers: 3/5 $5 \bigcirc \\ 4 \odot$ by 1/10

H. Answers:

5, 11, 10, 1, 6, 12, 9, 8, 4, 2, 3, 7